Abstract

A high performance hollow fiber (HF) surface plasmon resonance (SPR) sensor utilizing one-dimensional photonic crystal (1DPC) is proposed. The performance of the designed sensor is analyzed theoretically with respect to the center wavelength and the bilayer period. Because the light transmitted in the sensor mostly have large incident angles, the center wavelength of the 1DPC should shift to longer wavelength to ensure the band gap covers the spectrum range of the incident light. The sensor exhibits better performance when the detection spectral range is located in the band gap of 1DPC for incident angle larger than 80°. Compared to conventional HF SPR sensor, the figure of merit (FOM) of the proposed sensor is three to four times higher while the sensitivity is comparable. Moreover, within the limited spectrum range of 400 to 800nm, the proposed sensor have much wider refractive index (RI) detection range and can detect sensed medium with low RI very close to the supporting tube.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index

Bing-Hong Liu, Yong-Xiang Jiang, Xiao-Song Zhu, Xiao-Li Tang, and Yi-Wei Shi
Opt. Express 21(26) 32349-32357 (2013)

Hollow-fiber-based surface plasmon resonance sensor with large refractive index detection range and high linearity

Liangcheng Duan, Xianchao Yang, Ying Lu, and Jianquan Yao
Appl. Opt. 56(36) 9907-9912 (2017)

Dual channel multilayer-coated surface plasmon resonance sensor for dual refractive index range measurements

Mengdi Lu, Wei Peng, Qiang Liu, Yun Liu, Lixia Li, Yuzhang Liang, and Jean-Francois Masson
Opt. Express 25(8) 8563-8570 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
    [Crossref]
  2. Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(1), 359–367 (2014).
    [Crossref] [PubMed]
  3. H. Sípová, S. Zhang, A. M. Dudley, D. Galas, K. Wang, and J. Homola, “Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level,” Anal. Chem. 82(24), 10110–10115 (2010).
    [Crossref] [PubMed]
  4. E. A. Velichko and A. I. Nosich, “Refractive-index sensitivities of hybrid surface-plasmon resonances for a core-shell circular silver nanotube sensor,” Opt. Lett. 38(23), 4978–4981 (2013).
    [Crossref] [PubMed]
  5. K. Lodewijks, J. Ryken, W. V. Roy, G. Borghs, L. Lagae, and P. V. Dorpe, “Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications,” Plasmonics 8(3), 1379–1385 (2013).
    [Crossref]
  6. P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
    [Crossref]
  7. L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism-based surface plasmon resonance microscopy,” Opt. Express 22(19), 22771–22785 (2014).
    [Crossref] [PubMed]
  8. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
    [Crossref]
  9. I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sens. Actuators B Chem. 216, 518–526 (2015).
    [Crossref]
  10. J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
    [Crossref] [PubMed]
  11. C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
    [Crossref] [PubMed]
  12. C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22(9), A842–A856 (2014).
    [Crossref] [PubMed]
  13. A. Hassani and M. Skorobogatiy, “Design of the Microstructured Optical Fiber-Based Surface Plasmon Resonance Sensors with Enhanced Microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  14. J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21(11), 13733–13740 (2013).
    [Crossref] [PubMed]
  15. L. Xia, Y. T. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
    [Crossref]
  16. N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29(12), 1805–1809 (1990).
    [Crossref] [PubMed]
  17. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-Agl coatings,” Appl. Opt. 44(30), 6449–6455 (2005).
    [Crossref] [PubMed]
  18. K. R. Sui, Y. W. Shi, X. L. Tang, X. S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett. 33(4), 318–320 (2008).
    [Crossref] [PubMed]
  19. C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
    [Crossref]
  20. B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
    [Crossref] [PubMed]
  21. Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
    [Crossref] [PubMed]
  22. N. N. Luan and J. Q. Yao, “High Refractive Index Surface Plasmon Resonance Sensor Based on a Silver Wire Filled Hollow Fiber,” IEEE Photonics J. 8(1), 1–9 (2016).
  23. X. J. Tan, X. S. Zhu, and Y. W. Shi, “Hollow fiber sensor based on metal-cladding waveguide with extended detection range,” Opt. Express 25(15), 16996–17003 (2017).
    [Crossref] [PubMed]
  24. K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol. 39(8), 1528–1531 (2007).
    [Crossref]
  25. Y. W. Shi, Z. Y. Pan, Y. Matsuura, and M. Miyagi, “New and simple method for fabricating polymer-coated silver hollow fibers with large mechanical strength,” Opt. Laser Technol. 32(4), 273–275 (2000).
    [Crossref]
  26. H. A. Macleod, Thin-Film Optical Filters (CRC, 2010).
  27. R. Tabassum and B. D. Gupta, “Performance Analysis of Bimetallic Layer with Zinc Oxide for SPR-Based Fiber Optic Sensor,” J. Lightwave Technol. 33(22), 4565–4571 (2015).
    [Crossref]
  28. A. Hongo, M. Miyagi, M. Saito, and Y. Matsuura, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
    [Crossref]
  29. X. J. Tan and X. S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24(14), 16016–16026 (2016).
    [Crossref] [PubMed]
  30. K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
    [Crossref] [PubMed]
  31. J. H. Ahn, T. Y. Seong, W. M. Kim, T. S. Lee, I. Kim, and K. S. Lee, “Fiber-optic waveguide coupled surface plasmon resonance sensor,” Opt. Express 20(19), 21729–21738 (2012).
    [Crossref] [PubMed]
  32. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000).
    [Crossref] [PubMed]
  33. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
    [Crossref]
  34. B. Auguie, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17(3), 035003 (2014).
    [Crossref]
  35. X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad Omnidirectional Reflector in the One-Dimensional Ternary Photonic Crystals Containing Superconductor,” Prog. Electromagnetics Res. 120(7), 17–34 (2011).
    [Crossref]
  36. X. Lin, Y. W. Shi, K. R. Sui, and X. S. Zhu, “Transmission Characteristics of Infrared Hollow Fibers with Multilayered Dielectric Inner-Coatings,” Hongwai Yu Haomibo Xuebao 29(4), 278–282 (2010).

2017 (2)

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

X. J. Tan, X. S. Zhu, and Y. W. Shi, “Hollow fiber sensor based on metal-cladding waveguide with extended detection range,” Opt. Express 25(15), 16996–17003 (2017).
[Crossref] [PubMed]

2016 (4)

X. J. Tan and X. S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24(14), 16016–16026 (2016).
[Crossref] [PubMed]

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

N. N. Luan and J. Q. Yao, “High Refractive Index Surface Plasmon Resonance Sensor Based on a Silver Wire Filled Hollow Fiber,” IEEE Photonics J. 8(1), 1–9 (2016).

2015 (4)

I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sens. Actuators B Chem. 216, 518–526 (2015).
[Crossref]

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
[Crossref] [PubMed]

R. Tabassum and B. D. Gupta, “Performance Analysis of Bimetallic Layer with Zinc Oxide for SPR-Based Fiber Optic Sensor,” J. Lightwave Technol. 33(22), 4565–4571 (2015).
[Crossref]

2014 (5)

C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22(9), A842–A856 (2014).
[Crossref] [PubMed]

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism-based surface plasmon resonance microscopy,” Opt. Express 22(19), 22771–22785 (2014).
[Crossref] [PubMed]

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(1), 359–367 (2014).
[Crossref] [PubMed]

C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
[Crossref]

B. Auguie, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17(3), 035003 (2014).
[Crossref]

2013 (4)

2012 (1)

2011 (2)

L. Xia, Y. T. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad Omnidirectional Reflector in the One-Dimensional Ternary Photonic Crystals Containing Superconductor,” Prog. Electromagnetics Res. 120(7), 17–34 (2011).
[Crossref]

2010 (3)

X. Lin, Y. W. Shi, K. R. Sui, and X. S. Zhu, “Transmission Characteristics of Infrared Hollow Fibers with Multilayered Dielectric Inner-Coatings,” Hongwai Yu Haomibo Xuebao 29(4), 278–282 (2010).

H. Sípová, S. Zhang, A. M. Dudley, D. Galas, K. Wang, and J. Homola, “Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level,” Anal. Chem. 82(24), 10110–10115 (2010).
[Crossref] [PubMed]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

2008 (3)

2007 (1)

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol. 39(8), 1528–1531 (2007).
[Crossref]

2006 (1)

2005 (1)

2000 (2)

C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000).
[Crossref] [PubMed]

Y. W. Shi, Z. Y. Pan, Y. Matsuura, and M. Miyagi, “New and simple method for fabricating polymer-coated silver hollow fibers with large mechanical strength,” Opt. Laser Technol. 32(4), 273–275 (2000).
[Crossref]

1990 (1)

1989 (1)

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

Ahn, J. H.

Albert, J.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(1), 359–367 (2014).
[Crossref] [PubMed]

Arghir, I.

I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sens. Actuators B Chem. 216, 518–526 (2015).
[Crossref]

Auguie, B.

B. Auguie, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17(3), 035003 (2014).
[Crossref]

Baganizi, D.

Berini, P.

Borghs, G.

K. Lodewijks, J. Ryken, W. V. Roy, G. Borghs, L. Lagae, and P. V. Dorpe, “Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Bruchhausen, A.

B. Auguie, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17(3), 035003 (2014).
[Crossref]

Calemczuk, R.

Camci-Unal, G.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(1), 359–367 (2014).
[Crossref] [PubMed]

Caucheteur, C.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Chen, C.

Chen, H. S.

Chen, J.

Chu, J. H.

C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
[Crossref]

Croitoru, N.

Cuttica, D. F.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(1), 359–367 (2014).
[Crossref] [PubMed]

Dai, X. Y.

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad Omnidirectional Reflector in the One-Dimensional Ternary Photonic Crystals Containing Superconductor,” Prog. Electromagnetics Res. 120(7), 17–34 (2011).
[Crossref]

Delport, F.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sens. Actuators B Chem. 216, 518–526 (2015).
[Crossref]

Dokmeci, M. R.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(1), 359–367 (2014).
[Crossref] [PubMed]

Dorpe, P. V.

K. Lodewijks, J. Ryken, W. V. Roy, G. Borghs, L. Lagae, and P. V. Dorpe, “Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Dror, J.

Dubois, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Dudley, A. M.

H. Sípová, S. Zhang, A. M. Dudley, D. Galas, K. Wang, and J. Homola, “Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level,” Anal. Chem. 82(24), 10110–10115 (2010).
[Crossref] [PubMed]

Fainstein, A.

B. Auguie, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17(3), 035003 (2014).
[Crossref]

Fan, D. Y.

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Feng, D.

Galas, D.

H. Sípová, S. Zhang, A. M. Dudley, D. Galas, K. Wang, and J. Homola, “Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level,” Anal. Chem. 82(24), 10110–10115 (2010).
[Crossref] [PubMed]

Gannot, I.

George, R.

Gils, A.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Guo, H.

C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
[Crossref]

Guo, J.

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Gupta, B. D.

R. Tabassum and B. D. Gupta, “Performance Analysis of Bimetallic Layer with Zinc Oxide for SPR-Based Fiber Optic Sensor,” J. Lightwave Technol. 33(22), 4565–4571 (2015).
[Crossref]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Harrington, J. A.

Hassani, A.

He, G. R.

Homola, J.

H. Sípová, S. Zhang, A. M. Dudley, D. Galas, K. Wang, and J. Homola, “Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level,” Anal. Chem. 82(24), 10110–10115 (2010).
[Crossref] [PubMed]

Hongo, A.

Hsieh, C.

Hsu, T. C.

Hu, Z. G.

C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
[Crossref]

Iwai, K.

K. R. Sui, Y. W. Shi, X. L. Tang, X. S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett. 33(4), 318–320 (2008).
[Crossref] [PubMed]

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol. 39(8), 1528–1531 (2007).
[Crossref]

Jha, R.

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

Jiang, Y. X.

Jing, C. B.

C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
[Crossref]

Khademhosseini, A.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(1), 359–367 (2014).
[Crossref] [PubMed]

Kiang, Y. W.

Kim, I.

Kim, W. M.

Kuo, Y.

Lagae, L.

K. Lodewijks, J. Ryken, W. V. Roy, G. Borghs, L. Lagae, and P. V. Dorpe, “Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Lai, C. H.

Lammertyn, J.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sens. Actuators B Chem. 216, 518–526 (2015).
[Crossref]

Laplatine, L.

Lee, K. S.

Lee, T. S.

Leroy, L.

Li, S.

Liao, C. H.

Lin, C. H.

Lin, K.

Lin, X.

X. Lin, Y. W. Shi, K. R. Sui, and X. S. Zhu, “Transmission Characteristics of Infrared Hollow Fibers with Multilayered Dielectric Inner-Coatings,” Hongwai Yu Haomibo Xuebao 29(4), 278–282 (2010).

Liu, A. Y.

C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
[Crossref]

Liu, B. H.

Liu, D. M.

L. Xia, Y. T. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Livache, T.

Lodewijks, K.

K. Lodewijks, J. Ryken, W. V. Roy, G. Borghs, L. Lagae, and P. V. Dorpe, “Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Lu, J.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Lu, S. B.

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Lu, Y.

Luan, N. N.

N. N. Luan and J. Q. Yao, “High Refractive Index Surface Plasmon Resonance Sensor Based on a Silver Wire Filled Hollow Fiber,” IEEE Photonics J. 8(1), 1–9 (2016).

Maharana, P. K.

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

Malachovská, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Marche, P. N.

Matsuura, Y.

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol. 39(8), 1528–1531 (2007).
[Crossref]

Y. W. Shi, Z. Y. Pan, Y. Matsuura, and M. Miyagi, “New and simple method for fabricating polymer-coated silver hollow fibers with large mechanical strength,” Opt. Laser Technol. 32(4), 273–275 (2000).
[Crossref]

A. Hongo, M. Miyagi, M. Saito, and Y. Matsuura, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
[Crossref]

Mégret, P.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Ming, H.

Miyagi, M.

K. R. Sui, Y. W. Shi, X. L. Tang, X. S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett. 33(4), 318–320 (2008).
[Crossref] [PubMed]

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol. 39(8), 1528–1531 (2007).
[Crossref]

Y. W. Shi, Z. Y. Pan, Y. Matsuura, and M. Miyagi, “New and simple method for fabricating polymer-coated silver hollow fibers with large mechanical strength,” Opt. Laser Technol. 32(4), 273–275 (2000).
[Crossref]

A. Hongo, M. Miyagi, M. Saito, and Y. Matsuura, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
[Crossref]

Nosich, A. I.

Padhy, P.

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

Pan, Z. Y.

Y. W. Shi, Z. Y. Pan, Y. Matsuura, and M. Miyagi, “New and simple method for fabricating polymer-coated silver hollow fibers with large mechanical strength,” Opt. Laser Technol. 32(4), 273–275 (2000).
[Crossref]

Qin, W.

Ribaut, C.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Roupioz, Y.

Roy, W. V.

K. Lodewijks, J. Ryken, W. V. Roy, G. Borghs, L. Lagae, and P. V. Dorpe, “Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Ryken, J.

K. Lodewijks, J. Ryken, W. V. Roy, G. Borghs, L. Lagae, and P. V. Dorpe, “Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Saito, M.

Seong, T. Y.

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Shevchenko, Y.

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(1), 359–367 (2014).
[Crossref] [PubMed]

Shi, Y. W.

X. J. Tan, X. S. Zhu, and Y. W. Shi, “Hollow fiber sensor based on metal-cladding waveguide with extended detection range,” Opt. Express 25(15), 16996–17003 (2017).
[Crossref] [PubMed]

Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
[Crossref] [PubMed]

C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
[Crossref]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

X. Lin, Y. W. Shi, K. R. Sui, and X. S. Zhu, “Transmission Characteristics of Infrared Hollow Fibers with Multilayered Dielectric Inner-Coatings,” Hongwai Yu Haomibo Xuebao 29(4), 278–282 (2010).

K. R. Sui, Y. W. Shi, X. L. Tang, X. S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett. 33(4), 318–320 (2008).
[Crossref] [PubMed]

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol. 39(8), 1528–1531 (2007).
[Crossref]

Y. W. Shi, Z. Y. Pan, Y. Matsuura, and M. Miyagi, “New and simple method for fabricating polymer-coated silver hollow fibers with large mechanical strength,” Opt. Laser Technol. 32(4), 273–275 (2000).
[Crossref]

Shih, P. Y.

Shuai, B. B.

L. Xia, Y. T. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Sípová, H.

H. Sípová, S. Zhang, A. M. Dudley, D. Galas, K. Wang, and J. Homola, “Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level,” Anal. Chem. 82(24), 10110–10115 (2010).
[Crossref] [PubMed]

Skorobogatiy, M.

Spasic, D.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sens. Actuators B Chem. 216, 518–526 (2015).
[Crossref]

Sui, K. R.

X. Lin, Y. W. Shi, K. R. Sui, and X. S. Zhu, “Transmission Characteristics of Infrared Hollow Fibers with Multilayered Dielectric Inner-Coatings,” Hongwai Yu Haomibo Xuebao 29(4), 278–282 (2010).

K. R. Sui, Y. W. Shi, X. L. Tang, X. S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett. 33(4), 318–320 (2008).
[Crossref] [PubMed]

Tabassum, R.

Tan, X. J.

Tanev, S.

Tang, X. L.

Tu, C. G.

Tzolov, V.

Van Stappen, T.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Velichko, E. A.

Verlinden, B. E.

I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sens. Actuators B Chem. 216, 518–526 (2015).
[Crossref]

Verma, R. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Vermeire, S.

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

Voisin, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Wang, K.

H. Sípová, S. Zhang, A. M. Dudley, D. Galas, K. Wang, and J. Homola, “Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level,” Anal. Chem. 82(24), 10110–10115 (2010).
[Crossref] [PubMed]

Wang, P.

Wang, Q. K.

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Wattiez, R.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Wen, S. C.

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad Omnidirectional Reflector in the One-Dimensional Ternary Photonic Crystals Containing Superconductor,” Prog. Electromagnetics Res. 120(7), 17–34 (2011).
[Crossref]

Wu, L. M.

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Xia, L.

L. Xia, Y. T. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Xiang, Y. J.

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad Omnidirectional Reflector in the One-Dimensional Ternary Photonic Crystals Containing Superconductor,” Prog. Electromagnetics Res. 120(7), 17–34 (2011).
[Crossref]

Xiao, Y.

Xin, X.

Xue, J.

Yang, C. C.

Yang, P. X.

C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
[Crossref]

Yao, J. Q.

N. N. Luan and J. Q. Yao, “High Refractive Index Surface Plasmon Resonance Sensor Based on a Silver Wire Filled Hollow Fiber,” IEEE Photonics J. 8(1), 1–9 (2016).

Yeh, J. H.

Zhang, S.

H. Sípová, S. Zhang, A. M. Dudley, D. Galas, K. Wang, and J. Homola, “Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level,” Anal. Chem. 82(24), 10110–10115 (2010).
[Crossref] [PubMed]

Zhang, Y. T.

L. Xia, Y. T. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Zheng, R.

Zhou, C.

L. Xia, Y. T. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

Zhu, X.

Zhu, X. S.

Anal. Chem. (1)

H. Sípová, S. Zhang, A. M. Dudley, D. Galas, K. Wang, and J. Homola, “Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level,” Anal. Chem. 82(24), 10110–10115 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. B. Jing, H. Guo, Z. G. Hu, P. X. Yang, J. H. Chu, A. Y. Liu, and Y. W. Shi, “Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems,” Appl. Phys. Lett. 105(1), 011102 (2014).
[Crossref]

Biosens. Bioelectron. (3)

Y. Shevchenko, G. Camci-Unal, D. F. Cuttica, M. R. Dokmeci, J. Albert, and A. Khademhosseini, “Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior,” Biosens. Bioelectron. 56(1), 359–367 (2014).
[Crossref] [PubMed]

J. Lu, T. Van Stappen, D. Spasic, F. Delport, S. Vermeire, A. Gils, and J. Lammertyn, “Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients,” Biosens. Bioelectron. 79, 173–179 (2016).
[Crossref] [PubMed]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Hongwai Yu Haomibo Xuebao (1)

X. Lin, Y. W. Shi, K. R. Sui, and X. S. Zhu, “Transmission Characteristics of Infrared Hollow Fibers with Multilayered Dielectric Inner-Coatings,” Hongwai Yu Haomibo Xuebao 29(4), 278–282 (2010).

IEEE Photonics J. (1)

N. N. Luan and J. Q. Yao, “High Refractive Index Surface Plasmon Resonance Sensor Based on a Silver Wire Filled Hollow Fiber,” IEEE Photonics J. 8(1), 1–9 (2016).

J. Lightwave Technol. (1)

J. Opt. (1)

B. Auguie, A. Bruchhausen, and A. Fainstein, “Critical coupling to Tamm plasmons,” J. Opt. 17(3), 035003 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

L. Xia, Y. T. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition refractive index fiber sensors with hollow core and a long period grating,” Opt. Commun. 284(12), 2835–2838 (2011).
[Crossref]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Opt. Express (10)

C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000).
[Crossref] [PubMed]

K. Lin, Y. Lu, J. Chen, R. Zheng, P. Wang, and H. Ming, “Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity,” Opt. Express 16(23), 18599–18604 (2008).
[Crossref] [PubMed]

J. H. Ahn, T. Y. Seong, W. M. Kim, T. S. Lee, I. Kim, and K. S. Lee, “Fiber-optic waveguide coupled surface plasmon resonance sensor,” Opt. Express 20(19), 21729–21738 (2012).
[Crossref] [PubMed]

J. Xue, S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, “Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance,” Opt. Express 21(11), 13733–13740 (2013).
[Crossref] [PubMed]

X. J. Tan and X. S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24(14), 16016–16026 (2016).
[Crossref] [PubMed]

X. J. Tan, X. S. Zhu, and Y. W. Shi, “Hollow fiber sensor based on metal-cladding waveguide with extended detection range,” Opt. Express 25(15), 16996–17003 (2017).
[Crossref] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the Microstructured Optical Fiber-Based Surface Plasmon Resonance Sensors with Enhanced Microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22(9), A842–A856 (2014).
[Crossref] [PubMed]

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism-based surface plasmon resonance microscopy,” Opt. Express 22(19), 22771–22785 (2014).
[Crossref] [PubMed]

Opt. Laser Technol. (2)

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol. 39(8), 1528–1531 (2007).
[Crossref]

Y. W. Shi, Z. Y. Pan, Y. Matsuura, and M. Miyagi, “New and simple method for fabricating polymer-coated silver hollow fibers with large mechanical strength,” Opt. Laser Technol. 32(4), 273–275 (2000).
[Crossref]

Opt. Lett. (3)

Plasmonics (1)

K. Lodewijks, J. Ryken, W. V. Roy, G. Borghs, L. Lagae, and P. V. Dorpe, “Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Prog. Electromagnetics Res. (1)

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad Omnidirectional Reflector in the One-Dimensional Ternary Photonic Crystals Containing Superconductor,” Prog. Electromagnetics Res. 120(7), 17–34 (2011).
[Crossref]

Sens. Actuators A Phys. (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A Phys. 159(1), 24–32 (2010).
[Crossref]

Sens. Actuators B Chem. (3)

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

I. Arghir, D. Spasic, B. E. Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sens. Actuators B Chem. 216, 518–526 (2015).
[Crossref]

L. M. Wu, J. Guo, Q. K. Wang, S. B. Lu, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor,” Sens. Actuators B Chem. 249, 542–548 (2017).
[Crossref]

Other (1)

H. A. Macleod, Thin-Film Optical Filters (CRC, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of HF SPR sensor based on 1DPC.

Fig. 2
Fig. 2

Sketch and ray model of HF SPR sensor utilizing 1DPC.

Fig. 3
Fig. 3

(a) Transmission spectrum of the proposed HF SPR sensor at n0 = 1.50, N = 2, L0 = 600nm, dAg = 30nm. (b) Electric field distribution at the resonance wavelength 666nm and the incident angle of 88°.

Fig. 4
Fig. 4

Bandgap of 1DPC with different center wavelength at n0 = 1.55. The left side represents p-polarized light, while the right side represents s-polarized light. (a) L0 = 600nm, (b) L0 = 1000nm, (c) L0 = 1400nm, (d) L0 = 1800nm.

Fig. 5
Fig. 5

Transmission spectra of conventional HF SPR sensor and the proposed sensor at varied n0. (a) Conventional HF SPR sensor. (b) The proposed sensor with L0 = 600nm, N = 2. (c) The proposed sensor with L0 = 1400nm, N = 2.

Fig. 6
Fig. 6

Theoretical results of performance for conventional HF SPR sensor and the proposed sensor with different center wavelength. (a) Sensitivity versus n0. (b) FOM versus n0.

Fig. 7
Fig. 7

Transmission spectra and theoretical results of performance for the proposed sensor with different thickness of silver layer. (a) Transmission spectra at n0 = 1.53, N = 2 and L0 = 1400nm. (b) Sensitivity versus n0. (c) FOM versus n0.

Fig. 8
Fig. 8

Transmission spectra and theoretical results of performance for the proposed sensor with different bilayer period. (a) Transmission spectra at n0 = 1.50, dAg = 30nm and L0 = 1400nm. (b) Sensitivity versus n0. (c)FOM versus n0.

Fig. 9
Fig. 9

Transmission spectra of the proposed sensor with different RI of sensed medium at N = 2, L0 = 1400nm and dAg = 30nm. The incident light is random polarized having both p- and s-polarized components.

Tables (1)

Tables Icon

Table 1 Comparison between the proposed sensor and conventional HF SPR sensor

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n 1 d 1 = n 2 d 2 = L 0 /4.
ε(λ)= ε r +i ε i =1 λ 2 λ c λ p 2 ( λ c +iλ) .
P in (φ)exp( φ 2 / φ 0 (λ) 2 ).
P out = θ min π/2 P in (θ) R p (θ) N(θ) dθ.
N(θ)= L Dtanθ .
T= θ min π/2 P in (θ) R p (θ) N(θ) dθ θ min π/2 P in (θ)dθ .
S= Δ λ res Δ n 0 .
FOM= S FWHM ×d,
β i = n 0 sin(θ),