Abstract

Temperature-sensitive scattering of terahertz (THz) waves by infinitely long, cylindrical core-shell structures was theoretically studied. Each structure is a dielectric cylinder coated with an InSb shell illuminated by either a transverse-electric (TE) or a transverse-magnetic (TM) plane wave. InSb is a thermally tunable semiconductor showing a transition from dielectric to plasmonic state at THz frequencies. Accordingly, the total scattering efficiency (TSE) can be thermally tuned for both polarization states of the incident plane wave. The spectral locations of the maxima and minima of the TSE of an InSb-coated cylinder can be exploited for cloaking the core. At least three scenarios lead to the strong suppression of scattering by a single core-shell structure in different spectral regimes when the temperature is fixed. The excitation of localized surface-plasmon resonances is the feature being common for two of them, while the effect of volumetric resonance dominates in the third scenario. Regimes that are either highly or weakly sensitive to the core material were identified. Weak sensitivity enables masking, i.e., the core material cannot be identified by a far-zone observer. The TSE minima are usually significantly sensitive to the polarization state, but ones with weak sensitivity to the polarization state also exist.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index dielectric shells

A. E. Serebryannikov, P. V. Usik, and Ekmel Ozbay
Opt. Express 17(19) 16869-16876 (2009)

Half-sized cylindrical invisibility cloaks using double near zero slabs with realistic material size and properties

Reza Dehbashi, Konstanty S. Bialkowski, and Amin M. Abbosh
Opt. Express 25(20) 24486-24500 (2017)

Surface polaritons of small coated cylinders illuminated by normal incident TM and TE plane waves

Hao-Yuan She, Le-Wei Li, Olivier J.F. Martin, and Juan R. Mosig
Opt. Express 16(2) 1007-1019 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  2. N.-A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
    [Crossref] [PubMed]
  3. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007).
    [Crossref] [PubMed]
  4. A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009).
    [Crossref] [PubMed]
  5. G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Power scattering and absorption mediated by cloak/anti-cloak interactions: a transformation-optics route toward invisible sensors,” J. Opt. Soc. Am. B 27(10), 2132–2140 (2010).
    [Crossref]
  6. J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
    [Crossref] [PubMed]
  7. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
    [Crossref] [PubMed]
  8. G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Half-cylindrical far field superlens with coupled Fabry–Perot cavities,” J. Appl. Phys. 104(9), 096103 (2008).
    [Crossref]
  9. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [Crossref]
  10. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
    [Crossref]
  11. H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
    [Crossref] [PubMed]
  12. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
    [Crossref] [PubMed]
  13. D. P. Gaillot, C. Croënne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16(6), 3986–3992 (2008).
    [Crossref] [PubMed]
  14. A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E. 78(4), 045602 (2008).
    [Crossref] [PubMed]
  15. P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, “Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94(1), 014103 (2009).
    [Crossref]
  16. A. E. Serebryannikov and E. Ozbay, “Non-ideal multifrequency cloaking using strongly dispersive materials,” Physica B 405(14), 2959–2963 (2010).
    [Crossref]
  17. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1814–1823 (1999).
    [Crossref]
  18. T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91(12), 125414 (2015).
    [Crossref]
  19. N.-A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10(11), 115020 (2008).
    [Crossref]
  20. A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21(9), 10454–10459 (2013).
    [Crossref] [PubMed]
  21. A. E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A 81(5), 053818 (2010).
    [Crossref]
  22. I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Superbackscattering from single dielectric particles,” J. Opt. 17(7), 072001 (2015).
    [Crossref]
  23. Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
    [Crossref]
  24. A. V. Goncharenko, E. F. Venger, Y. C. Chang, and A. O. Pinchuk, “Arrays of core-shell nanospheres as 3D isotropic broadband ENZ and highly absorbing metamaterials,” Opt. Mater. Express 4(11), 2310–2322 (2014).
    [Crossref]
  25. J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
    [Crossref] [PubMed]
  26. F. Morgan, J. McPhillips, G. Wurtz, S. A. Maier, A. V. Zayats, and R. Pollard, “Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials,” Appl. Phys. Lett. 102(10), 103103 (2013).
    [Crossref]
  27. D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
    [Crossref]
  28. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
    [Crossref] [PubMed]
  29. C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85(15), 155402 (2012).
  30. E. A. Velichko, “Evaluation of a graphene-covered dielectric microtube as a refractive-index sensor in the terahertz range,” J. Opt. 18(3), 035008 (2016).
    [Crossref]
  31. P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
    [Crossref]
  32. M. Riso, M. Cuevas, and R. A. Depine, “Tunable plasmonic enhancement of light scattering and absorption in graphene coated subwavelength wires,” J. Opt. 17(7), 075001 (2015).
    [Crossref]
  33. J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
    [Crossref]
  34. J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
    [Crossref] [PubMed]
  35. J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
    [Crossref]
  36. S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
    [Crossref]
  37. C. Luo, D. Li, J. Yao, and F. Ling, “Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface,” J. Electromagn. Waves Appl. 29(18), 2512–2522 (2015).
    [Crossref]
  38. M. Kim, J. Jeong, J. K. S. Poon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33(5), 980–988 (2016).
    [Crossref]
  39. T. G. Mackay and A. Lakhtakia, “Temperature-mediated transition from Dyakonov surface waves to surface-plasmon-polariton waves,” IEEE Photonics J. 8(5), 4202813 (2016).
  40. F. Chiadini, V. Fiumara, T. G. Mackay, A. Scaglione, and A. Lakhtakia, “Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves,” J. Opt. 19(8), 085002 (2017).
    [Crossref]
  41. L. Kai and A. D’Alessio, “Finely stratified cylinder model for radially inhomogeneous cylinders normally irradiated by electromagnetic plane waves,” Appl. Opt. 34(24), 5520–5530 (1995).
    [Crossref] [PubMed]
  42. I. Gurwich, N. Shiloah, and M. Kleiman, “The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder,” J. Quant. Spectrosc. Radiat. Transf. 63(2–6), 217–229 (1999).
    [Crossref]
  43. S. Manickavasagam and M. P. Mengüç, “Scattering-matrix elements of coated infinite-length cylinders,” Appl. Opt. 37(12), 2473–2482 (1998).
    [Crossref] [PubMed]
  44. G. Sinclair, “Theory of models of electromagnetic systems,” Proc. IRE36(11), 1364–1370 (1948).
  45. H. C. van de Hulst, Light Scattering by Small Particles (Dover Press, 1981).
  46. R. W. Ziolkowski and A. D. Kipple, “Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells,” Phys. Rev. E. 72(3), 036602 (2005).
    [Crossref] [PubMed]
  47. H. R. Stuart and A. Pidwerbetsky, “Electrically small antenna elements using negative permittivity resonators,” IEEE Trans. Antenn. Propag. 54(6), 1644–1653 (2006).
    [Crossref]
  48. E. Colak, A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations,” J. Appl. Phys. 119(19), 193108 (2016).
    [Crossref]
  49. M. Veysi, C. Guclu, O. Boyraz, and F. Capolino, “Thin anisotropic metasurfaces for simultaneous light focusing and polarization manipulation,” J. Opt. Soc. Am. B 32(2), 318–323 (2015).
    [Crossref]
  50. A. E. Serebryannikov, E. Colak, T. Magath, and E. Ozbay, “Two types of single-beam deflection and asymmetric transmission in photonic structures without interface corrugations,” J. Opt. Soc. Am. A 33(12), 2450–2458 (2016).
    [Crossref] [PubMed]

2017 (1)

F. Chiadini, V. Fiumara, T. G. Mackay, A. Scaglione, and A. Lakhtakia, “Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves,” J. Opt. 19(8), 085002 (2017).
[Crossref]

2016 (5)

M. Kim, J. Jeong, J. K. S. Poon, and G. V. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33(5), 980–988 (2016).
[Crossref]

T. G. Mackay and A. Lakhtakia, “Temperature-mediated transition from Dyakonov surface waves to surface-plasmon-polariton waves,” IEEE Photonics J. 8(5), 4202813 (2016).

E. Colak, A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations,” J. Appl. Phys. 119(19), 193108 (2016).
[Crossref]

A. E. Serebryannikov, E. Colak, T. Magath, and E. Ozbay, “Two types of single-beam deflection and asymmetric transmission in photonic structures without interface corrugations,” J. Opt. Soc. Am. A 33(12), 2450–2458 (2016).
[Crossref] [PubMed]

E. A. Velichko, “Evaluation of a graphene-covered dielectric microtube as a refractive-index sensor in the terahertz range,” J. Opt. 18(3), 035008 (2016).
[Crossref]

2015 (5)

M. Riso, M. Cuevas, and R. A. Depine, “Tunable plasmonic enhancement of light scattering and absorption in graphene coated subwavelength wires,” J. Opt. 17(7), 075001 (2015).
[Crossref]

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91(12), 125414 (2015).
[Crossref]

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Superbackscattering from single dielectric particles,” J. Opt. 17(7), 072001 (2015).
[Crossref]

M. Veysi, C. Guclu, O. Boyraz, and F. Capolino, “Thin anisotropic metasurfaces for simultaneous light focusing and polarization manipulation,” J. Opt. Soc. Am. B 32(2), 318–323 (2015).
[Crossref]

C. Luo, D. Li, J. Yao, and F. Ling, “Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface,” J. Electromagn. Waves Appl. 29(18), 2512–2522 (2015).
[Crossref]

2014 (1)

2013 (5)

A. Mirzaei, I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, “Cloaking and enhanced scattering of core-shell plasmonic nanowires,” Opt. Express 21(9), 10454–10459 (2013).
[Crossref] [PubMed]

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

F. Morgan, J. McPhillips, G. Wurtz, S. A. Maier, A. V. Zayats, and R. Pollard, “Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials,” Appl. Phys. Lett. 102(10), 103103 (2013).
[Crossref]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
[Crossref]

2012 (2)

C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85(15), 155402 (2012).

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

2011 (2)

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
[Crossref]

2010 (6)

A. E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A 81(5), 053818 (2010).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

A. E. Serebryannikov and E. Ozbay, “Non-ideal multifrequency cloaking using strongly dispersive materials,” Physica B 405(14), 2959–2963 (2010).
[Crossref]

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Power scattering and absorption mediated by cloak/anti-cloak interactions: a transformation-optics route toward invisible sensors,” J. Opt. Soc. Am. B 27(10), 2132–2140 (2010).
[Crossref]

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

2009 (5)

A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009).
[Crossref] [PubMed]

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, “Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94(1), 014103 (2009).
[Crossref]

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34(5), 644–646 (2009).
[Crossref] [PubMed]

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
[Crossref] [PubMed]

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[Crossref]

2008 (6)

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

N.-A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10(11), 115020 (2008).
[Crossref]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref] [PubMed]

D. P. Gaillot, C. Croënne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16(6), 3986–3992 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E. 78(4), 045602 (2008).
[Crossref] [PubMed]

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Half-cylindrical far field superlens with coupled Fabry–Perot cavities,” J. Appl. Phys. 104(9), 096103 (2008).
[Crossref]

2007 (2)

2006 (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

H. R. Stuart and A. Pidwerbetsky, “Electrically small antenna elements using negative permittivity resonators,” IEEE Trans. Antenn. Propag. 54(6), 1644–1653 (2006).
[Crossref]

2005 (1)

R. W. Ziolkowski and A. D. Kipple, “Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells,” Phys. Rev. E. 72(3), 036602 (2005).
[Crossref] [PubMed]

1999 (2)

I. Gurwich, N. Shiloah, and M. Kleiman, “The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder,” J. Quant. Spectrosc. Radiat. Transf. 63(2–6), 217–229 (1999).
[Crossref]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16(10), 1814–1823 (1999).
[Crossref]

1998 (1)

1995 (1)

Alitalo, P.

C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85(15), 155402 (2012).

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, “Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94(1), 014103 (2009).
[Crossref]

Alù, A.

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Power scattering and absorption mediated by cloak/anti-cloak interactions: a transformation-optics route toward invisible sensors,” J. Opt. Soc. Am. B 27(10), 2132–2140 (2010).
[Crossref]

A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E. 78(4), 045602 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007).
[Crossref] [PubMed]

Atkinson, R.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Averitt, R. D.

Bernety, H. M.

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

Bongard, F.

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, “Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94(1), 014103 (2009).
[Crossref]

Botten, L. C.

Boyraz, O.

Bui, S. T.

S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
[Crossref]

Bui, X. K.

S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
[Crossref]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Campione, S.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Cao, H.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

Capolino, F.

M. Veysi, C. Guclu, O. Boyraz, and F. Capolino, “Thin anisotropic metasurfaces for simultaneous light focusing and polarization manipulation,” J. Opt. Soc. Am. B 32(2), 318–323 (2015).
[Crossref]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Castaldi, G.

Chan, C. T.

Chang, Y. C.

Cheah, K. W.

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Half-cylindrical far field superlens with coupled Fabry–Perot cavities,” J. Appl. Phys. 104(9), 096103 (2008).
[Crossref]

Chen, H.

Chen, P.-Y.

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

Chen, Z.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Cheng, Q.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Chiadini, F.

F. Chiadini, V. Fiumara, T. G. Mackay, A. Scaglione, and A. Lakhtakia, “Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves,” J. Opt. 19(8), 085002 (2017).
[Crossref]

Chong, Y.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

Christensen, T.

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91(12), 125414 (2015).
[Crossref]

Colak, E.

A. E. Serebryannikov, E. Colak, T. Magath, and E. Ozbay, “Two types of single-beam deflection and asymmetric transmission in photonic structures without interface corrugations,” J. Opt. Soc. Am. A 33(12), 2450–2458 (2016).
[Crossref] [PubMed]

E. Colak, A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations,” J. Appl. Phys. 119(19), 193108 (2016).
[Crossref]

Croënne, C.

Cuevas, M.

M. Riso, M. Cuevas, and R. A. Depine, “Tunable plasmonic enhancement of light scattering and absorption in graphene coated subwavelength wires,” J. Opt. 17(7), 075001 (2015).
[Crossref]

Cui, T. J.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Cummer, S. A.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D’Alessio, A.

de Ceglia, D.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Depine, R. A.

M. Riso, M. Cuevas, and R. A. Depine, “Tunable plasmonic enhancement of light scattering and absorption in graphene coated subwavelength wires,” J. Opt. 17(7), 075001 (2015).
[Crossref]

Ederra, I.

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Superbackscattering from single dielectric particles,” J. Opt. 17(7), 072001 (2015).
[Crossref]

Eleftheriades, G. V.

Engheta, N.

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Power scattering and absorption mediated by cloak/anti-cloak interactions: a transformation-optics route toward invisible sensors,” J. Opt. Soc. Am. B 27(10), 2132–2140 (2010).
[Crossref]

A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E. 78(4), 045602 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007).
[Crossref] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Enoch, S.

N.-A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10(11), 115020 (2008).
[Crossref]

Fan, S.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
[Crossref]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

Fiumara, V.

F. Chiadini, V. Fiumara, T. G. Mackay, A. Scaglione, and A. Lakhtakia, “Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves,” J. Opt. 19(8), 085002 (2017).
[Crossref]

Gaillot, D. P.

Galdi, V.

Gallina, I.

Goncharenko, A. V.

Gonzalo, R.

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Superbackscattering from single dielectric particles,” J. Opt. 17(7), 072001 (2015).
[Crossref]

Gu, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Guclu, C.

Gurwich, I.

I. Gurwich, N. Shiloah, and M. Kleiman, “The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder,” J. Quant. Spectrosc. Radiat. Transf. 63(2–6), 217–229 (1999).
[Crossref]

Halas, N. J.

Han, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[Crossref]

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
[Crossref] [PubMed]

Hendren, W. R.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Hguyen, V. D.

S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
[Crossref]

Höök, F.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Jauho, A.-P.

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91(12), 125414 (2015).
[Crossref]

Jeong, J.

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Jonsson, M. P.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kai, L.

Kim, M.

Kipple, A. D.

R. W. Ziolkowski and A. D. Kipple, “Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells,” Phys. Rev. E. 72(3), 036602 (2005).
[Crossref] [PubMed]

Kivshar, Y. S.

Kleiman, M.

I. Gurwich, N. Shiloah, and M. Kleiman, “The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder,” J. Quant. Spectrosc. Radiat. Transf. 63(2–6), 217–229 (1999).
[Crossref]

Lakhtakia, A.

F. Chiadini, V. Fiumara, T. G. Mackay, A. Scaglione, and A. Lakhtakia, “Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves,” J. Opt. 19(8), 085002 (2017).
[Crossref]

T. G. Mackay and A. Lakhtakia, “Temperature-mediated transition from Dyakonov surface waves to surface-plasmon-polariton waves,” IEEE Photonics J. 8(5), 4202813 (2016).

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[Crossref]

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
[Crossref] [PubMed]

Lee, Y. P.

S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
[Crossref]

Li, D.

C. Luo, D. Li, J. Yao, and F. Ling, “Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface,” J. Electromagn. Waves Appl. 29(18), 2512–2522 (2015).
[Crossref]

Li, G. X.

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Half-cylindrical far field superlens with coupled Fabry–Perot cavities,” J. Appl. Phys. 104(9), 096103 (2008).
[Crossref]

Liberal, I.

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Superbackscattering from single dielectric particles,” J. Opt. 17(7), 072001 (2015).
[Crossref]

Lievens, P.

S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
[Crossref]

Ling, F.

C. Luo, D. Li, J. Yao, and F. Ling, “Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface,” J. Electromagn. Waves Appl. 29(18), 2512–2522 (2015).
[Crossref]

Lippens, D.

Lu, X.

Luo, C.

C. Luo, D. Li, J. Yao, and F. Ling, “Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface,” J. Electromagn. Waves Appl. 29(18), 2512–2522 (2015).
[Crossref]

Mackay, T. G.

F. Chiadini, V. Fiumara, T. G. Mackay, A. Scaglione, and A. Lakhtakia, “Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves,” J. Opt. 19(8), 085002 (2017).
[Crossref]

T. G. Mackay and A. Lakhtakia, “Temperature-mediated transition from Dyakonov surface waves to surface-plasmon-polariton waves,” IEEE Photonics J. 8(5), 4202813 (2016).

Magath, T.

Maier, S. A.

F. Morgan, J. McPhillips, G. Wurtz, S. A. Maier, A. V. Zayats, and R. Pollard, “Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials,” Appl. Phys. Lett. 102(10), 103103 (2013).
[Crossref]

Manickavasagam, S.

McPhedran, R. C.

McPhillips, J.

F. Morgan, J. McPhillips, G. Wurtz, S. A. Maier, A. V. Zayats, and R. Pollard, “Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials,” Appl. Phys. Lett. 102(10), 103103 (2013).
[Crossref]

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Mengüç, M. P.

Milton, G. W.

Miroshnichenko, A. E.

Mirzaei, A.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Morgan, F.

F. Morgan, J. McPhillips, G. Wurtz, S. A. Maier, A. V. Zayats, and R. Pollard, “Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials,” Appl. Phys. Lett. 102(10), 103103 (2013).
[Crossref]

Mortensen, N. A.

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91(12), 125414 (2015).
[Crossref]

Mosig, J.

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, “Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94(1), 014103 (2009).
[Crossref]

Murphy, A.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Ng, J.

Nguyen, T. T.

S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
[Crossref]

Nicorovici, N.-A.

Nicorovici, N.-A. P.

N.-A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10(11), 115020 (2008).
[Crossref]

Noh, H.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

Ozbay, E.

A. E. Serebryannikov, E. Colak, T. Magath, and E. Ozbay, “Two types of single-beam deflection and asymmetric transmission in photonic structures without interface corrugations,” J. Opt. Soc. Am. A 33(12), 2450–2458 (2016).
[Crossref] [PubMed]

E. Colak, A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations,” J. Appl. Phys. 119(19), 193108 (2016).
[Crossref]

A. E. Serebryannikov and E. Ozbay, “Non-ideal multifrequency cloaking using strongly dispersive materials,” Physica B 405(14), 2959–2963 (2010).
[Crossref]

A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009).
[Crossref] [PubMed]

Padooru, Y. R.

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

Pendry, J.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Pidwerbetsky, A.

H. R. Stuart and A. Pidwerbetsky, “Electrically small antenna elements using negative permittivity resonators,” IEEE Trans. Antenn. Propag. 54(6), 1644–1653 (2006).
[Crossref]

Pinchuk, A. O.

Pollard, R.

F. Morgan, J. McPhillips, G. Wurtz, S. A. Maier, A. V. Zayats, and R. Pollard, “Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials,” Appl. Phys. Lett. 102(10), 103103 (2013).
[Crossref]

Pollard, R. J.

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Poon, J. K. S.

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref] [PubMed]

Rahm, M.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref] [PubMed]

Riso, M.

M. Riso, M. Cuevas, and R. A. Depine, “Tunable plasmonic enhancement of light scattering and absorption in graphene coated subwavelength wires,” J. Opt. 17(7), 075001 (2015).
[Crossref]

Ruan, Z.

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
[Crossref]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

Scaglione, A.

F. Chiadini, V. Fiumara, T. G. Mackay, A. Scaglione, and A. Lakhtakia, “Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves,” J. Opt. 19(8), 085002 (2017).
[Crossref]

Scalora, M.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Schurig, D.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Serebryannikov, A. E.

A. E. Serebryannikov, E. Colak, T. Magath, and E. Ozbay, “Two types of single-beam deflection and asymmetric transmission in photonic structures without interface corrugations,” J. Opt. Soc. Am. A 33(12), 2450–2458 (2016).
[Crossref] [PubMed]

E. Colak, A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations,” J. Appl. Phys. 119(19), 193108 (2016).
[Crossref]

A. E. Serebryannikov and E. Ozbay, “Non-ideal multifrequency cloaking using strongly dispersive materials,” Physica B 405(14), 2959–2963 (2010).
[Crossref]

A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009).
[Crossref] [PubMed]

Shadrivov, I. V.

Shiloah, N.

I. Gurwich, N. Shiloah, and M. Kleiman, “The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder,” J. Quant. Spectrosc. Radiat. Transf. 63(2–6), 217–229 (1999).
[Crossref]

Sinclair, G.

G. Sinclair, “Theory of models of electromagnetic systems,” Proc. IRE36(11), 1364–1370 (1948).

Smith, D. R.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Soric, J.

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

Starr, A.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stone, A. D.

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

Stuart, H. R.

H. R. Stuart and A. Pidwerbetsky, “Electrically small antenna elements using negative permittivity resonators,” IEEE Trans. Antenn. Propag. 54(6), 1644–1653 (2006).
[Crossref]

Tam, H. L.

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Half-cylindrical far field superlens with coupled Fabry–Perot cavities,” J. Appl. Phys. 104(9), 096103 (2008).
[Crossref]

Tayeb, G.

N.-A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10(11), 115020 (2008).
[Crossref]

Tian, Z.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
[Crossref] [PubMed]

Tretyakov, S.

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, “Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94(1), 014103 (2009).
[Crossref]

Usik, P. V.

E. Colak, A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations,” J. Appl. Phys. 119(19), 193108 (2016).
[Crossref]

A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009).
[Crossref] [PubMed]

Valagiannopoulos, C. A.

C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85(15), 155402 (2012).

Velichko, E. A.

E. A. Velichko, “Evaluation of a graphene-covered dielectric microtube as a refractive-index sensor in the terahertz range,” J. Opt. 18(3), 035008 (2016).
[Crossref]

Venger, E. F.

Veysi, M.

Vincenti, M. A.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

Vu, D. L.

S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
[Crossref]

Wang, F. Y.

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Half-cylindrical far field superlens with coupled Fabry–Perot cavities,” J. Appl. Phys. 104(9), 096103 (2008).
[Crossref]

Westcott, S. L.

Wubs, M.

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91(12), 125414 (2015).
[Crossref]

Wurtz, G.

F. Morgan, J. McPhillips, G. Wurtz, S. A. Maier, A. V. Zayats, and R. Pollard, “Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials,” Appl. Phys. Lett. 102(10), 103103 (2013).
[Crossref]

Yakovlev, A. B.

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

Yao, J.

C. Luo, D. Li, J. Yao, and F. Ling, “Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface,” J. Electromagn. Waves Appl. 29(18), 2512–2522 (2015).
[Crossref]

Zayats, A. V.

F. Morgan, J. McPhillips, G. Wurtz, S. A. Maier, A. V. Zayats, and R. Pollard, “Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials,” Appl. Phys. Lett. 102(10), 103103 (2013).
[Crossref]

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Zhang, W.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34(9), 1465–1467 (2009).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Ziolkowski, R. W.

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Superbackscattering from single dielectric particles,” J. Opt. 17(7), 072001 (2015).
[Crossref]

R. W. Ziolkowski and A. D. Kipple, “Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells,” Phys. Rev. E. 72(3), 036602 (2005).
[Crossref] [PubMed]

Zurcher, J.-F.

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, “Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94(1), 014103 (2009).
[Crossref]

ACS Nano (1)

J. McPhillips, A. Murphy, M. P. Jonsson, W. R. Hendren, R. Atkinson, F. Höök, A. V. Zayats, and R. J. Pollard, “High-performance biosensing using arrays of plasmonic nanotubes,” ACS Nano 4(4), 2210–2216 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

P. Alitalo, F. Bongard, J.-F. Zurcher, J. Mosig, and S. Tretyakov, “Expermental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks,” Appl. Phys. Lett. 94(1), 014103 (2009).
[Crossref]

Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98(4), 043101 (2011).
[Crossref]

F. Morgan, J. McPhillips, G. Wurtz, S. A. Maier, A. V. Zayats, and R. Pollard, “Fabrication and optical properties of large-scale arrays of gold nanocavities based on rod-in-a-tube coaxials,” Appl. Phys. Lett. 102(10), 103103 (2013).
[Crossref]

IEEE Photonics J. (1)

T. G. Mackay and A. Lakhtakia, “Temperature-mediated transition from Dyakonov surface waves to surface-plasmon-polariton waves,” IEEE Photonics J. 8(5), 4202813 (2016).

IEEE Trans. Antenn. Propag. (1)

H. R. Stuart and A. Pidwerbetsky, “Electrically small antenna elements using negative permittivity resonators,” IEEE Trans. Antenn. Propag. 54(6), 1644–1653 (2006).
[Crossref]

J. Appl. Phys. (2)

E. Colak, A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations,” J. Appl. Phys. 119(19), 193108 (2016).
[Crossref]

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Half-cylindrical far field superlens with coupled Fabry–Perot cavities,” J. Appl. Phys. 104(9), 096103 (2008).
[Crossref]

J. Electromagn. Waves Appl. (1)

C. Luo, D. Li, J. Yao, and F. Ling, “Direct thermal tuning of the terahertz plasmonic response of semiconductor metasurface,” J. Electromagn. Waves Appl. 29(18), 2512–2522 (2015).
[Crossref]

J. Mod. Opt. (1)

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[Crossref]

J. Opt. (5)

S. T. Bui, V. D. Hguyen, X. K. Bui, T. T. Nguyen, P. Lievens, Y. P. Lee, and D. L. Vu, “Thermally tunable magnetic metamaterials at THz frequencies,” J. Opt. 15(7), 075101 (2013).
[Crossref]

E. A. Velichko, “Evaluation of a graphene-covered dielectric microtube as a refractive-index sensor in the terahertz range,” J. Opt. 18(3), 035008 (2016).
[Crossref]

M. Riso, M. Cuevas, and R. A. Depine, “Tunable plasmonic enhancement of light scattering and absorption in graphene coated subwavelength wires,” J. Opt. 17(7), 075001 (2015).
[Crossref]

I. Liberal, I. Ederra, R. Gonzalo, and R. W. Ziolkowski, “Superbackscattering from single dielectric particles,” J. Opt. 17(7), 072001 (2015).
[Crossref]

F. Chiadini, V. Fiumara, T. G. Mackay, A. Scaglione, and A. Lakhtakia, “Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves,” J. Opt. 19(8), 085002 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

J. Quant. Spectrosc. Radiat. Transf. (1)

I. Gurwich, N. Shiloah, and M. Kleiman, “The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder,” J. Quant. Spectrosc. Radiat. Transf. 63(2–6), 217–229 (1999).
[Crossref]

New J. Phys. (3)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

P.-Y. Chen, J. Soric, Y. R. Padooru, H. M. Bernety, A. B. Yakovlev, and A. Alù, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. 15(12), 123029 (2013).
[Crossref]

N.-A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” New J. Phys. 10(11), 115020 (2008).
[Crossref]

Opt. Commun. (1)

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284(12), 3129–3133 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. A (1)

A. E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A 81(5), 053818 (2010).
[Crossref]

Phys. Rev. B (4)

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[Crossref]

T. Christensen, A.-P. Jauho, M. Wubs, and N. A. Mortensen, “Localized plasmons in graphene-coated nanospheres,” Phys. Rev. B 91(12), 125414 (2015).
[Crossref]

C. A. Valagiannopoulos and P. Alitalo, “Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings,” Phys. Rev. B 85(15), 155402 (2012).

Phys. Rev. E. (2)

R. W. Ziolkowski and A. D. Kipple, “Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells,” Phys. Rev. E. 72(3), 036602 (2005).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Effects of size and frequency dispersion in plasmonic cloaking,” Phys. Rev. E. 78(4), 045602 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108(18), 186805 (2012).
[Crossref] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, “Scattering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett. 100(2), 024301 (2008).
[Crossref] [PubMed]

Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[Crossref] [PubMed]

Physica B (1)

A. E. Serebryannikov and E. Ozbay, “Non-ideal multifrequency cloaking using strongly dispersive materials,” Physica B 405(14), 2959–2963 (2010).
[Crossref]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (2)

G. Sinclair, “Theory of models of electromagnetic systems,” Proc. IRE36(11), 1364–1370 (1948).

H. C. van de Hulst, Light Scattering by Small Particles (Dover Press, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Geometry of the boundary-value problem. (b) Relative permittivity of InSb at T = 345 K – solid blue lines, (b) 325 K – red dashed lines, 305 K – green dash-dotted lines, and 295 K – dotted black line; Re and Im indicate real and imaginary parts.
Fig. 2
Fig. 2 Total scattering efficiency σ when ε c =5 and the incident plane wave is TE polarized; (a-d) b = 6 μm and a = 14 μm, and (e-h) b = 10 μm and a = 14 μm; (a,e) T = 345 K, (b,f) T = 325 K, (c,g) T = 305 K, and (d,h) T = 295 K.
Fig. 3
Fig. 3 Contrast ψ=σ uc / σ c vs ka for (a) b = 6 μm and (b) b = 10 μm when a = 14 μm, ε c =5, and the incident plane wave is TE polarized. Solid blue lines are for T = 345 K, red dashed lines for T = 325 K, green dash-dotted lines for T = 305 K, and dotted black lines for T = 295 K. In order to calculate σ uc , ε InSb was replaced by 1.
Fig. 4
Fig. 4 Spatial profiles of the axial magnetic field when ε c =5, b = 6 μm, a = 14 μm, T = 325 K; (a) ka = 0.74 and ε InSb =11.8+i0.54, (b) ka = 0.762 and ε InSb =10.23+i0.5, (c) ka = 0.942 and ε InSb =1.28+i0.26, (d) ka = 1.0 and ε InSb =0.63+i0.22, and (e) ka = 1.79 and ε InSb =10.98+i0.0385. The dashed white lines indicate the core/shell interface. The structure is illuminated by a TE-polarized plane wave propagating from left to right.
Fig. 5
Fig. 5 Spatial profiles of the axial magnetic field when ε c =5, b = 10 μm, a = 14 μm, T = 325 K; (a) ka = 0.594 and ε InSb =26.95+i1.052, (b) ka = 0.627 and ε InSb =22.59+i0.895, (c) ka = 0.957 and ε InSb =0.751+i0.252, and (d) ka = 0.992 and ε InSb =0.388+i0.226. The dashed white lines indicate the core/shell interface. The structure is illuminated by a TE-polarized plane wave propagating from left to right.
Fig. 6
Fig. 6 Total scattering efficiency σ when ε c =5 and the incident plane wave is TM polarized; (a-d) b = 6 μm and a = 14 μm, and (e-h) b = 10 μm and a = 14 μm; (a,e) T = 345 K, (b,f) T = 325 K, (c,g) T = 305 K, and (d,h) T = 295 K.
Fig. 7
Fig. 7 Contrast ψ=σ uc / σ c vs ka for (a) b = 6 μm and (b) b = 10 μm when a = 14 μm, ε c =5, and the incident plane wave is TM polarized. Solid blue lines are for T = 345 K, red dashed lines for T = 325 K, green dash-dotted lines for T = 305 K, and dotted black lines for T = 295 K. In order to calculate σ uc , ε InSb was replaced by 1.
Fig. 8
Fig. 8 Spatial profiles of the axial electric field when ε c =5, a = 14 μm; (a-d) b = 6 μm; (e-h) b = 10 μm; (a,b,e,f) T = 295 K; (c,d,g,h) T = 325 K; (a) ka = 0.716 and ε InSb =0.15+i0.324, (b) ka = 1.675 and ε InSb =12.79+i0.0253, (c) ka = 0.965 and ε InSb =0.48+i0.246, (d) ka = 1.79 and ε InSb =10.98+i0.0385, (e) ka = 0.63 and ε InSb =4.76+i0.476, (f) ka = 2.12 and ε InSb =13.87+i0.0125, (g) ka = 0.83 and ε InSb =6.16+i0.386, (h) ka = 2.15 and ε InSb =12.42+i0.022. The dashed white lines indicate the core/shell interface. The structure is illuminated by a TM-polarized plane wave propagating from left to right.
Fig. 9
Fig. 9 Total scattering efficiency σ when b = 6 μm, a = 14 μm, T = 295 K, and the incident plane wave is either (a-c) TE polarized or (d-f) TM polarized; (a,d) ε c =4 (solid lines), ε c =5 (dashed lines), and ε c =11.4 (dotted lines); (b,e) ε c =35.4; and (c,f) ε c =450.
Fig. 10
Fig. 10 Total scattering efficiency σ when b = 6 μm, a = 14 μm, T = 345 K, and the incident plane wave is either (a-c) TE polarized or (d-f) TM polarized; (a,d) ε c =4 (solid lines), ε c =5 (dashed lines), and ε c =11.4 (dotted lines); (b,e) ε c =35.4; and (c,f) ε c =450.
Fig. 11
Fig. 11 Spatial profiles of the axial magnetic field when b = 6 μm, a = 14 μm; (a,b) ka = 1.53, T = 295 K and ε InSb =12.2+i0.033; (c,d) ka = 1.73, T = 345 K and ε InSb =8.48+i0.061; (e-h) ka = 1.2, T = 345 K and ε InSb =0.72+i0.183; (a,c,e) ε c =5; (b,d,f) ε c =11.4; (g) ε c =35.4; and (h) ε c =450. The dashed white lines indicate the core/shell interface. The structure is illuminated by a TE-polarized plane wave propagating from left to right.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ= (ka) 1 n= c n 2
ε InSb (ω)= ε ω p 2 /( ω 2 +iγω)
N=5.76× 10 14 T 3/2 exp(0.26/2 k B T)

Metrics