Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue

Open Access Open Access

Abstract

X-ray phase contrast imaging offers higher sensitivity compared to conventional X-ray attenuation imaging and can be simply implemented by propagation when using a partially coherent synchrotron beam. We address the phase retrieval in in-line phase nano-CT using multiple propagation distances. We derive a method which extends Paganin’s single distance method and compare it to the contrast transfer function (CTF) approach in the case of a homogeneous object. The methods are applied to phase nano-CT data acquired at the voxel size of 30 nm (ID16A, ESRF, Grenoble, France). Our results show a gain in image quality in terms of the signal-to-noise ratio and spatial resolution when using four distances instead of one. The extended Paganin’s method followed by an iterative refinement step provides the best reconstructions while the homogeneous CTF method delivers quasi comparable results for our data, even without refinement step.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Soft tissue 3D imaging in the lab through optimised propagation-based phase contrast computed tomography

Berit Zeller-Plumhoff, Joshua L. Mead, Deck Tan, Tiina Roose, Geraldine F. Clough, Richard P. Boardman, and Philipp Schneider
Opt. Express 25(26) 33451-33468 (2017)

Fast algorithms for nonlinear and constrained phase retrieval in near-field X-ray holography based on Tikhonov regularization

Simon Huhn, Leon Merten Lohse, Jens Lucht, and Tim Salditt
Opt. Express 30(18) 32871-32886 (2022)

Comparison of quantitative multi-material phase-retrieval algorithms in propagation-based phase-contrast X-ray tomography

Ilian Häggmark, William Vågberg, Hans M. Hertz, and Anna Burvall
Opt. Express 25(26) 33543-33558 (2017)

Supplementary Material (8)

NameDescription
Visualization 1       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method using 1 distance without iterative refinement
Visualization 2       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method using 1 distance with 10 iterations' refinement
Visualization 3       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method using 4 distances without iterative refinement
Visualization 4       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method using 4 distances with 10 iterations' refinement
Visualization 5       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method using 1 distance without iterative refinement
Visualization 6       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method using 1 distance with 10 iterations' refinement
Visualization 7       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method using 4 distances without iterative refinement
Visualization 8       100 slices in the middle of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method using 4 distances with 10 iterations' refinement

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of experimental setup of magnified X-ray phase nano-CT. Z 1 , Z 2 , Z 3 and Z 4 are 4 different focus-to-sample distances, Z d the focus-to-detector distance.
Fig. 2
Fig. 2 Plots of the filters in the Fourier domain. (a) The filters of both the homogeneous CTF method and Paganin’s method using a single distance; (c) the filters of the homogeneous CTF method using 4 different propagation distances; (e) the filters of the extended Paganin’s method using 4 different propagation distances; (b), (d) and (f) zoom on the filters corresponding to (a), (c) and (e) respectively.
Fig. 3
Fig. 3 Minimum Intensity Projections of reconstructed volumes at 30 nm voxel size retrieved by the homogeneous CTF method. (a), (b), (c) phase retrieved without iterative refinement using 1, 2 and 4 distances respectively; (d), (e), (f) phase retrieved with 10 iterations’ refinement using 1, 2 and 4 distances respectively (see Visualization 1, Visualization 2, Visualization 3, and Visualization 4).
Fig. 4
Fig. 4 Minimum Intensity Projections of reconstructed volumes at 30 nm voxel size retrieved by the extended Paganin’s method. (a), (b), (c) phase retrieved without iterative refinement using 1, 2 and 4 distances respectively; (d), (e), (f) phase retrieved with 10 iterations’ refinement using 1, 2 and 4 distances respectively (see Visualization 5, Visualization 6, Visualization 7, and Visualization 8).
Fig. 5
Fig. 5 Quantitative evaluation of SNR and spatial resolution of the reconstructions at 30 nm voxel size for both homogeneous CTF and Paganin’s methods followed by a refinement with 0 iteration or 10 iterations, using 1, 2 or 4 distances. (a) SNR; (b) spatial resolution. Blue: 1 distance, Red: 2 distances, Green: 4 distances.

Tables (2)

Tables Icon

Table 1 Specific experimental parameters.

Tables Icon

Table 2 Measurements of SNR and estimation of the spatial resolution in the reconstructed images for different phase retrieval methods.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

n( x,y,z )=1 δ n ( x,y,z )+iβ( x,y,z ),
T( x )=a( x )exp[ iφ( x ) ]=exp[ B( x )+iφ( x ) ] B( x )=( 2π/λ ) β( x,y,z )dz φ( x )=( 2π/λ ) δ n ( x,y,z )dz ,
I D k ( x )= | T( x ) P D k ( x ) | 2 P D k ( x )= 1 iλ D k exp( i π λ D k | x | 2 ) ,
φ( x )= 1 2 δ n β ln( F 1 { F( I D k / I Inc )( f ) 1+λ D k π δ n β f 2 }( x ) ),
T( x )1B( x )+iφ( x ).
I ˜ D k ( f )= δ Dirac ( f )2cos( πλ D k f 2 ) B ˜ ( f )+2sin( πλ D k f 2 ) φ ˜ ( f ),
B( x )= 2π λ 1 δ n /β δ n ( x,y,z )dz = 1 δ n /β φ( x ).
φ ˜ ( f )= 1 2 δ n β I ˜ D k ( f ) δ Dirac ( f ) cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 ) .
I ˜ norm,k ( f )=F( I D k I Inc )( f ), H ˜ k ( f )=1+ D k δ n λπ β f 2 T ˜ 1 ( f )=F{ exp( 2β δ n φ( x ) ) }( f ) .
I ˜ norm,k ( f )= T ˜ 1 ( f ) H ˜ k ( f ).
minε= k=1 K | T ˜ 1 ( f ) H ˜ k ( f ) I ˜ norm,k ( f ) | 2 +α | T ˜ 1 ( f ) | 2 .
T ˜ ^ 1 ( f )= 1 K k=1 K H ˜ k ( f ) I ˜ norm,k ( f ) 1 K k=1 K H ˜ k ( f ) 2 +α .
φ ^ ( x )= 1 2 δ n β ln( F 1 { 1 K k=1 K H ˜ k ( f ) I ˜ norm,k ( f ) 1 K k=1 K H ˜ k ( f ) 2 +α }( x ) ).
G ˜ k ( f )=cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 ).
I ˜ D k ( f )= δ Dirac ( f )+2 G ˜ k ( f ) φ ˜ ( f ).
φ ˜ ^ ( f )= 1 2 δ n β 1 K k=1 K G ˜ k ( f )( I ˜ D k ( f ) δ Dirac ( f ) ) 1 K k=1 K G ˜ k ( f ) 2 +α .
T 1 ( x )=exp( 2 δ n /β φ( x ) )1+ 2 δ n /β φ( x ).
T ˜ 1 ( f ) δ Dirac ( f )+ 2 δ n /β φ ˜ ( f ).
δ Dirac ( f )+ 2 δ n /β φ ˜ ( f )= I ˜ norm,k ( f ) 1+λ D k π δ n β f 2 .
φ ˜ ( f ) 1 2 δ n β I ˜ norm,k ( f ) δ Dirac ( f ) 1+λ D k π δ n β f 2 .
G ˜ k ( f )=cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 )1+λ D k π δ n β f 2 .
φ ˜ ^ ( f )= 1 2 δ n β 1 K k=1 K [ cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 ) ]( I ˜ D k ( f ) δ Dirac ( f ) ) 1 K k=1 K [ cos( πλ D k f 2 )+ δ n β sin( πλ D k f 2 ) ] 2 +α ,
φ ˜ ^ ( f )= 1 2 δ n β 1 K k=1 K ( 1+λ D k π δ n β f 2 )( I ˜ norm,k ( f ) δ Dirac ( f ) ) 1 K k=1 K ( 1+λ D k π δ n β f 2 ) 2 +α .
M k = Z d / Z k .
D k = [ Z k ( Z d Z k ) ]/ Z d .
F k = A 2 / λ D k ,
r= πw 4 1 log2log( 1/a ) ,
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.