Abstract

Extreme ultraviolet (EUV) spectra from laser produced bismuth plasmas were recorded in the 8-17 nm spectral region using a Nd:YAG laser with a pulse length of 8 ns operating at a range of laser power densities. Due to the broad-band emission at 8-17 nm, bismuth plasmas show promise as sources of quasicontinuous radiation in the extreme ultraviolet. When varying the incident laser power density, ionic populations of Bi ions at different power densities were estimated by the collisional-radiative (CR) model for explanation of changes in the spectral profile. Comparison of experimental spectra with atomic structure calculations using the Hartree-Fock with configuration interaction (HFCI) code of Cowan was performed in order to identify most of the features in the spectra.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characteristics of extreme ultraviolet emission from mid-infrared laser-produced rare-earth Gd plasmas

Takeshi Higashiguchi, Bowen Li, Yuhei Suzuki, Masato Kawasaki, Hayato Ohashi, Shuichi Torii, Daisuke Nakamura, Akihiko Takahashi, Tatsuo Okada, Weihua Jiang, Taisuke Miura, Akira Endo, Padraig Dunne, Gerry O’Sullivan, and Tetsuya Makimura
Opt. Express 21(26) 31837-31845 (2013)

13.5 nm EUV generation from tin-doped droplets using a fiber laser

Simi A. George, Kai-Chung Hou, Kazutoshi Takenoshita, Almantas Galvanauskas, and Martin C. Richardson
Opt. Express 15(25) 16348-16356 (2007)

Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source

Frank Barkusky, Armin Bayer, Stefan Döring, Peter Grossmann, and Klaus Mann
Opt. Express 18(5) 4346-4355 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
    [Crossref]
  2. H. Tanaka, K. Akinaga, A. Takahashi, T. Okada, Hakozaki, and H. Fukuoka, “Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma,” Proc. SPIE 5448, 737–748 (2004).
    [Crossref]
  3. P. Mangat, J. Wasson, S. Hector, G. Cardinale, and S. Bajt, “EUV mask fabrication using Be-based multi-layer mirrors,” Proc. SPIE 3997, 814–818 (2000).
  4. C. W. Maloney and B. W. Smith, “Longer wavelength EUV lithography (LW-EUVL),” Proc. SPIE 8332, 83222Z (2012).
  5. M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).
  6. K. Ota, Y. Watanabe, H. Franken, and V. Banine, “EUV source requirements,” in Proc. Int. Sematech EUV Source Workshop (2004).
  7. V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D Appl. Phys. 44(25), 253001 (2011).
    [Crossref]
  8. U. Dinger, “Source requirements for next generation AIMS EUV,” in 2014 International Workshop on EUV and Soft X-Ray Sources (2014).
  9. R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).
  10. J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, “Self-organized regular surface patterning by pulsed laser ablation,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(3), 681–686 (2009).
    [Crossref]
  11. A. Bayer, F. Barkusky, St. Döring, B. Flöter, C. Peth, and K. Mann, “Structural and chemical surface analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (2009), pp. 1.
    [Crossref]
  12. F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
    [Crossref]
  13. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12(3), 158–160 (1987).
    [Crossref] [PubMed]
  14. I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
    [Crossref]
  15. H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
    [Crossref]
  16. I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
    [Crossref]
  17. B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
    [Crossref]
  18. T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
    [Crossref]
  19. A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57(2), 276–282 (1998).
    [Crossref]
  20. P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
    [Crossref] [PubMed]
  21. S. Mrozowski, “Arc spectrum of bismuth Bi I,” Phys. Rev. 62(11–12), 526–534 (1942).
    [Crossref]
  22. S. George, J. Vergès, and J. H. Munsee, “Hyperfine-structure measurements in bismuth using a Fourier-transform spectrometer,” J. Opt. Soc. Am. B 2(8), 1258–1263 (1985).
    [Crossref]
  23. G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
    [Crossref]
  24. M. F. Crawford and A. B. Mclay, “Spark spectra of bismuth, Bi III and Bi II,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 143(850), 540–557 (1934).
    [Crossref]
  25. A. B. McLay and M. F. Crawford, “Multiplet and hyperfine structure analyses of Bi IV. Discussion of perturbation effects,” Phys. Rev. 44(12), 986–996 (1933).
    [Crossref]
  26. G. K. Schoepfle, “The spectra of lead IV and bismuth V,” Phys. Rev. 47(3), 232–234 (1935).
    [Crossref]
  27. S. S. Churilov and Y. N. Joshi, “Observation of the strongest 5s25p65d-(5s25p55d6s+5s25p67p) transitions in Au XI to Bi XV Ions,” Phys. Scr. 63(5), 363–366 (2001).
    [Crossref]
  28. S. S. Churilov, Y. N. Joshi, and J. Reader, “Analysis of 5p65d-(5p65f+5p66p+5p55d2+5p55d6s) transitions in Tl XIII, Pb XIV and Bi XV and revised wavelengths for 5p6 1S0-5p55d(3/2, 5/2)1 transitions in Hg XIII, Tl XIV, Pb XV and Bi XVI,” Phys. Scr. 66(3), 213–221 (2002).
    [Crossref]
  29. Y. Kobayashi, D. Kato, H. A. Sakaue, I. Murakami, and N. Nakamura, “Spectroscopic study of promethiumlike bismuth with an electron-beam ion trap: search for alkali-metal-like resonance lines,” Phys. Rev. A 89(1), 010501 (2014).
    [Crossref]
  30. R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981).
  31. M. Essien and P. W. Fuerschbach, “Beam characterization of a materials processing CO2 laser,” Welding Research 75, 47s–54s (1996).
  32. J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Unresolved transition arrays,” Phys. Scr. 37(5), 659–663 (1988).
    [Crossref]
  33. D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
    [Crossref]
  34. A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
    [Crossref]
  35. D. Kilbane, “Transition wavelengths and unresolved transition array statistics of ions with Z = 72–89,” J. Phys. At. Mol. Opt. Phys. 44(16), 165006 (2011).
    [Crossref]
  36. T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
    [Crossref]

2016 (2)

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

2015 (1)

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

2014 (2)

Y. Kobayashi, D. Kato, H. A. Sakaue, I. Murakami, and N. Nakamura, “Spectroscopic study of promethiumlike bismuth with an electron-beam ion trap: search for alkali-metal-like resonance lines,” Phys. Rev. A 89(1), 010501 (2014).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

2013 (2)

I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
[Crossref]

I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
[Crossref]

2012 (2)

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

C. W. Maloney and B. W. Smith, “Longer wavelength EUV lithography (LW-EUVL),” Proc. SPIE 8332, 83222Z (2012).

2011 (2)

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D Appl. Phys. 44(25), 253001 (2011).
[Crossref]

D. Kilbane, “Transition wavelengths and unresolved transition array statistics of ions with Z = 72–89,” J. Phys. At. Mol. Opt. Phys. 44(16), 165006 (2011).
[Crossref]

2009 (2)

J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, “Self-organized regular surface patterning by pulsed laser ablation,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(3), 681–686 (2009).
[Crossref]

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

2007 (1)

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

2004 (3)

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

H. Tanaka, K. Akinaga, A. Takahashi, T. Okada, Hakozaki, and H. Fukuoka, “Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma,” Proc. SPIE 5448, 737–748 (2004).
[Crossref]

2002 (1)

S. S. Churilov, Y. N. Joshi, and J. Reader, “Analysis of 5p65d-(5p65f+5p66p+5p55d2+5p55d6s) transitions in Tl XIII, Pb XIV and Bi XV and revised wavelengths for 5p6 1S0-5p55d(3/2, 5/2)1 transitions in Hg XIII, Tl XIV, Pb XV and Bi XVI,” Phys. Scr. 66(3), 213–221 (2002).
[Crossref]

2001 (2)

S. S. Churilov and Y. N. Joshi, “Observation of the strongest 5s25p65d-(5s25p55d6s+5s25p67p) transitions in Au XI to Bi XV Ions,” Phys. Scr. 63(5), 363–366 (2001).
[Crossref]

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

2000 (1)

P. Mangat, J. Wasson, S. Hector, G. Cardinale, and S. Bajt, “EUV mask fabrication using Be-based multi-layer mirrors,” Proc. SPIE 3997, 814–818 (2000).

1998 (1)

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57(2), 276–282 (1998).
[Crossref]

1996 (1)

M. Essien and P. W. Fuerschbach, “Beam characterization of a materials processing CO2 laser,” Welding Research 75, 47s–54s (1996).

1988 (1)

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Unresolved transition arrays,” Phys. Scr. 37(5), 659–663 (1988).
[Crossref]

1987 (1)

1985 (1)

1973 (1)

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
[Crossref]

1942 (1)

S. Mrozowski, “Arc spectrum of bismuth Bi I,” Phys. Rev. 62(11–12), 526–534 (1942).
[Crossref]

1935 (1)

G. K. Schoepfle, “The spectra of lead IV and bismuth V,” Phys. Rev. 47(3), 232–234 (1935).
[Crossref]

1934 (1)

M. F. Crawford and A. B. Mclay, “Spark spectra of bismuth, Bi III and Bi II,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 143(850), 540–557 (1934).
[Crossref]

1933 (1)

A. B. McLay and M. F. Crawford, “Multiplet and hyperfine structure analyses of Bi IV. Discussion of perturbation effects,” Phys. Rev. 44(12), 986–996 (1933).
[Crossref]

Abe, T.

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

Akinaga, K.

H. Tanaka, K. Akinaga, A. Takahashi, T. Okada, Hakozaki, and H. Fukuoka, “Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma,” Proc. SPIE 5448, 737–748 (2004).
[Crossref]

Arai, G.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

Bahrenberg, L.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Bajt, S.

P. Mangat, J. Wasson, S. Hector, G. Cardinale, and S. Bajt, “EUV mask fabrication using Be-based multi-layer mirrors,” Proc. SPIE 3997, 814–818 (2000).

Banine, V.

K. Ota, Y. Watanabe, H. Franken, and V. Banine, “EUV source requirements,” in Proc. Int. Sematech EUV Source Workshop (2004).

Banine, V. Y.

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D Appl. Phys. 44(25), 253001 (2011).
[Crossref]

Barkusky, F.

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

A. Bayer, F. Barkusky, St. Döring, B. Flöter, C. Peth, and K. Mann, “Structural and chemical surface analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (2009), pp. 1.
[Crossref]

Bastiaensen, R. K. F. J.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57(2), 276–282 (1998).
[Crossref]

Bauche, J.

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Unresolved transition arrays,” Phys. Scr. 37(5), 659–663 (1988).
[Crossref]

Bauche-Arnoult, C.

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Unresolved transition arrays,” Phys. Scr. 37(5), 659–663 (1988).
[Crossref]

Bayer, A.

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

A. Bayer, F. Barkusky, St. Döring, B. Flöter, C. Peth, and K. Mann, “Structural and chemical surface analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (2009), pp. 1.
[Crossref]

Bergmann, K.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Bijkerk, F.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57(2), 276–282 (1998).
[Crossref]

Brage, T.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

Brandt, J. C.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

Bristol, R.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

Cardinale, G.

P. Mangat, J. Wasson, S. Hector, G. Cardinale, and S. Bajt, “EUV mask fabrication using Be-based multi-layer mirrors,” Proc. SPIE 3997, 814–818 (2000).

Carr, S.

Chandhok, M.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

Churilov, S. S.

S. S. Churilov, Y. N. Joshi, and J. Reader, “Analysis of 5p65d-(5p65f+5p66p+5p55d2+5p55d6s) transitions in Tl XIII, Pb XIV and Bi XV and revised wavelengths for 5p6 1S0-5p55d(3/2, 5/2)1 transitions in Hg XIII, Tl XIV, Pb XV and Bi XVI,” Phys. Scr. 66(3), 213–221 (2002).
[Crossref]

S. S. Churilov and Y. N. Joshi, “Observation of the strongest 5s25p65d-(5s25p55d6s+5s25p67p) transitions in Au XI to Bi XV Ions,” Phys. Scr. 63(5), 363–366 (2001).
[Crossref]

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57(2), 276–282 (1998).
[Crossref]

Colombant, D.

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
[Crossref]

Costache, F.

J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, “Self-organized regular surface patterning by pulsed laser ablation,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(3), 681–686 (2009).
[Crossref]

Crawford, M. F.

M. F. Crawford and A. B. Mclay, “Spark spectra of bismuth, Bi III and Bi II,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 143(850), 540–557 (1934).
[Crossref]

A. B. McLay and M. F. Crawford, “Multiplet and hyperfine structure analyses of Bi IV. Discussion of perturbation effects,” Phys. Rev. 44(12), 986–996 (1933).
[Crossref]

Danylyuk, S.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Davies, D. E. N.

Dinger, U.

U. Dinger, “Source requirements for next generation AIMS EUV,” in 2014 International Workshop on EUV and Soft X-Ray Sources (2014).

Dinh, T.-H.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

Döring, S.

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

Döring, St.

A. Bayer, F. Barkusky, St. Döring, B. Flöter, C. Peth, and K. Mann, “Structural and chemical surface analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (2009), pp. 1.
[Crossref]

Dunne, P.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
[Crossref]

Essien, M.

M. Essien and P. W. Fuerschbach, “Beam characterization of a materials processing CO2 laser,” Welding Research 75, 47s–54s (1996).

Fleming, J.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

Flöter, B.

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

A. Bayer, F. Barkusky, St. Döring, B. Flöter, C. Peth, and K. Mann, “Structural and chemical surface analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (2009), pp. 1.
[Crossref]

Franken, H.

K. Ota, Y. Watanabe, H. Franken, and V. Banine, “EUV source requirements,” in Proc. Int. Sematech EUV Source Workshop (2004).

Fuerschbach, P. W.

M. Essien and P. W. Fuerschbach, “Beam characterization of a materials processing CO2 laser,” Welding Research 75, 47s–54s (1996).

Fujimoto, J.

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

Fukuoka, H.

H. Tanaka, K. Akinaga, A. Takahashi, T. Okada, Hakozaki, and H. Fukuoka, “Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma,” Proc. SPIE 5448, 737–748 (2004).
[Crossref]

George, S.

Goldstein, M.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

Großmann, P.

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

Hakozaki,

H. Tanaka, K. Akinaga, A. Takahashi, T. Okada, Hakozaki, and H. Fukuoka, “Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma,” Proc. SPIE 5448, 737–748 (2004).
[Crossref]

Hara, H.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

Hector, S.

P. Mangat, J. Wasson, S. Hector, G. Cardinale, and S. Bajt, “EUV mask fabrication using Be-based multi-layer mirrors,” Proc. SPIE 3997, 814–818 (2000).

Herbert, S.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Hertz, H. M.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Higashiguchi, T.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

Holmberg, A.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Hori, T.

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

Jia, G.

J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, “Self-organized regular surface patterning by pulsed laser ablation,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(3), 681–686 (2009).
[Crossref]

Johansson, G. A.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Johansson, S.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

Joshi, Y. N.

S. S. Churilov, Y. N. Joshi, and J. Reader, “Analysis of 5p65d-(5p65f+5p66p+5p55d2+5p55d6s) transitions in Tl XIII, Pb XIV and Bi XV and revised wavelengths for 5p6 1S0-5p55d(3/2, 5/2)1 transitions in Hg XIII, Tl XIV, Pb XV and Bi XVI,” Phys. Scr. 66(3), 213–221 (2002).
[Crossref]

S. S. Churilov and Y. N. Joshi, “Observation of the strongest 5s25p65d-(5s25p55d6s+5s25p67p) transitions in Au XI to Bi XV Ions,” Phys. Scr. 63(5), 363–366 (2001).
[Crossref]

Juschkin, L.

I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
[Crossref]

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Kambali, I.

I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
[Crossref]

Kato, D.

Y. Kobayashi, D. Kato, H. A. Sakaue, I. Murakami, and N. Nakamura, “Spectroscopic study of promethiumlike bismuth with an electron-beam ion trap: search for alkali-metal-like resonance lines,” Phys. Rev. A 89(1), 010501 (2014).
[Crossref]

Kilbane, D.

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

D. Kilbane, “Transition wavelengths and unresolved transition array statistics of ions with Z = 72–89,” J. Phys. At. Mol. Opt. Phys. 44(16), 165006 (2011).
[Crossref]

Klapisch, M.

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Unresolved transition arrays,” Phys. Scr. 37(5), 659–663 (1988).
[Crossref]

Kobayashi, Y.

Y. Kobayashi, D. Kato, H. A. Sakaue, I. Murakami, and N. Nakamura, “Spectroscopic study of promethiumlike bismuth with an electron-beam ion trap: search for alkali-metal-like resonance lines,” Phys. Rev. A 89(1), 010501 (2014).
[Crossref]

Kondo, Y.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

Koshelev, K. N.

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D Appl. Phys. 44(25), 253001 (2011).
[Crossref]

Krautschik, C.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

Lebert, R.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Leckrone, D. S.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

Lee, S. H.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

Legall, H.

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

Li, B.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

Lindblom, M.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Liu, L.

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

Lunney, J. G.

I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
[Crossref]

Maloney, C. W.

C. W. Maloney and B. W. Smith, “Longer wavelength EUV lithography (LW-EUVL),” Proc. SPIE 8332, 83222Z (2012).

Mangat, P.

P. Mangat, J. Wasson, S. Hector, G. Cardinale, and S. Bajt, “EUV mask fabrication using Be-based multi-layer mirrors,” Proc. SPIE 3997, 814–818 (2000).

Mann, K.

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

A. Bayer, F. Barkusky, St. Döring, B. Flöter, C. Peth, and K. Mann, “Structural and chemical surface analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (2009), pp. 1.
[Crossref]

Maryasov, A.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Mclay, A. B.

M. F. Crawford and A. B. Mclay, “Spark spectra of bismuth, Bi III and Bi II,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 143(850), 540–557 (1934).
[Crossref]

A. B. McLay and M. F. Crawford, “Multiplet and hyperfine structure analyses of Bi IV. Discussion of perturbation effects,” Phys. Rev. 44(12), 986–996 (1933).
[Crossref]

Mißalla, T.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Miyazaki, T.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

Mizoguchi, H.

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

Mrozowski, S.

S. Mrozowski, “Arc spectrum of bismuth Bi I,” Phys. Rev. 62(11–12), 526–534 (1942).
[Crossref]

Munsee, J. H.

Murakami, I.

Y. Kobayashi, D. Kato, H. A. Sakaue, I. Murakami, and N. Nakamura, “Spectroscopic study of promethiumlike bismuth with an electron-beam ion trap: search for alkali-metal-like resonance lines,” Phys. Rev. A 89(1), 010501 (2014).
[Crossref]

Nakamura, N.

Y. Kobayashi, D. Kato, H. A. Sakaue, I. Murakami, and N. Nakamura, “Spectroscopic study of promethiumlike bismuth with an electron-beam ion trap: search for alkali-metal-like resonance lines,” Phys. Rev. A 89(1), 010501 (2014).
[Crossref]

Nakarai, H.

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

Nickles, P.-V.

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

Nishihara, K.

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

Nishikawa, T.

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

O’Reilly, F.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
[Crossref]

I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
[Crossref]

O’Sullivan, G.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
[Crossref]

Ohta, T.

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

Okada, T.

H. Tanaka, K. Akinaga, A. Takahashi, T. Okada, Hakozaki, and H. Fukuoka, “Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma,” Proc. SPIE 5448, 737–748 (2004).
[Crossref]

Ota, K.

K. Ota, Y. Watanabe, H. Franken, and V. Banine, “EUV source requirements,” in Proc. Int. Sematech EUV Source Workshop (2004).

Otsuka, T.

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

Panning, E.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

Peth, C.

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

A. Bayer, F. Barkusky, St. Döring, B. Flöter, C. Peth, and K. Mann, “Structural and chemical surface analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (2009), pp. 1.
[Crossref]

Phiesel, C.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Piel, C.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Proffitt, C. R.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

Ratzke, M.

J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, “Self-organized regular surface patterning by pulsed laser ablation,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(3), 681–686 (2009).
[Crossref]

Reader, J.

S. S. Churilov, Y. N. Joshi, and J. Reader, “Analysis of 5p65d-(5p65f+5p66p+5p55d2+5p55d6s) transitions in Tl XIII, Pb XIV and Bi XV and revised wavelengths for 5p6 1S0-5p55d(3/2, 5/2)1 transitions in Hg XIII, Tl XIV, Pb XV and Bi XVI,” Phys. Scr. 66(3), 213–221 (2002).
[Crossref]

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

Reese, M.

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

Reif, J.

J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, “Self-organized regular surface patterning by pulsed laser ablation,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(3), 681–686 (2009).
[Crossref]

Rice, B. J.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

Sakaue, H. A.

Y. Kobayashi, D. Kato, H. A. Sakaue, I. Murakami, and N. Nakamura, “Spectroscopic study of promethiumlike bismuth with an electron-beam ion trap: search for alkali-metal-like resonance lines,” Phys. Rev. A 89(1), 010501 (2014).
[Crossref]

Sansonetti, C. J.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

Sasaki, A.

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

Scally, E.

I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
[Crossref]

Schoepfle, G. K.

G. K. Schoepfle, “The spectra of lead IV and bismuth V,” Phys. Rev. 47(3), 232–234 (1935).
[Crossref]

Scholz, F.

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

Scholze, F.

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

Schönnagel, H.

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

Shell, M.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

Sheridan, P.

I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
[Crossref]

I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
[Crossref]

Shevelko, A. P.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57(2), 276–282 (1998).
[Crossref]

Shmaenok, L. A.

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57(2), 276–282 (1998).
[Crossref]

Sidenlnikov, Y.

I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
[Crossref]

Smith, B. W.

C. W. Maloney and B. W. Smith, “Longer wavelength EUV lithography (LW-EUVL),” Proc. SPIE 8332, 83222Z (2012).

Sokell, E.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
[Crossref]

I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
[Crossref]

Stiel, H.

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

Stivers, A.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

Stollberg, H.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Sunahara, A.

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

Suzuki, Y.

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

Swinkels, G. H. P. M.

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D Appl. Phys. 44(25), 253001 (2011).
[Crossref]

Takahashi, A.

H. Tanaka, K. Akinaga, A. Takahashi, T. Okada, Hakozaki, and H. Fukuoka, “Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma,” Proc. SPIE 5448, 737–748 (2004).
[Crossref]

Takman, P. A. C.

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

Tanaka, H.

H. Tanaka, K. Akinaga, A. Takahashi, T. Okada, Hakozaki, and H. Fukuoka, “Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma,” Proc. SPIE 5448, 737–748 (2004).
[Crossref]

Tanaka, S.

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

Tobin, I.

I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
[Crossref]

Tonon, G. F.

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
[Crossref]

Tryus, M.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Tümmler, J.

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

Varlamova, O.

J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, “Self-organized regular surface patterning by pulsed laser ablation,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(3), 681–686 (2009).
[Crossref]

Vergès, J.

Vieker, J.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Vogt, U.

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

von Wezyk, A.

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Wahlgren, G. M.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

Wasson, J.

P. Mangat, J. Wasson, S. Hector, G. Cardinale, and S. Bajt, “EUV mask fabrication using Be-based multi-layer mirrors,” Proc. SPIE 3997, 814–818 (2000).

Watanabe, Y.

K. Ota, Y. Watanabe, H. Franken, and V. Banine, “EUV source requirements,” in Proc. Int. Sematech EUV Source Workshop (2004).

Wu, T.

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

Yanagida, T.

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

Youngquist, R. C.

Yugami, N.

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

Zhang, G.

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

AIP Adv. (1)

A. Sasaki, A. Sunahara, K. Nishihara, and T. Nishikawa, “Investigation of the ionization balance of bismuth-to-tin plasmas for the extreme ultraviolet light source based on a computer-generated collisional radiative model,” AIP Adv. 6(10), 105002 (2016).
[Crossref]

Appl. Phys. Lett. (1)

I. Tobin, L. Juschkin, Y. Sidenlnikov, F. O’Reilly, P. Sheridan, E. Sokell, and J. G. Lunney, “Laser triggered Z-pinch broadband extreme ultraviolet source for metrology,” Appl. Phys. Lett. 102(20), 203504 (2013).
[Crossref]

Astrophys. J. (1)

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn stars χ LUPI and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J. 551(1), 520–535 (2001).
[Crossref]

J. Appl. Phys. (1)

D. Colombant and G. F. Tonon, “X-ray emission in laser-produced plasmas,” J. Appl. Phys. 44(8), 3524–3537 (1973).
[Crossref]

J. Micro/Nanolith. (1)

J. Fujimoto, T. Abe, S. Tanaka, T. Ohta, T. Hori, T. Yanagida, H. Nakarai, and H. Mizoguchi, “Laser-produced plasma-based extreme-ultraviolet light source technology for high-volume manufacturing extreme-ultraviolet lithography,” J. Micro/Nanolith. 11(2), 021111 (2012).
[Crossref]

J. Microsc. (1)

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, “High-resolution compact X-ray microscopy,” J. Microsc. 226(2), 175–181 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (4)

D. Kilbane, “Transition wavelengths and unresolved transition array statistics of ions with Z = 72–89,” J. Phys. At. Mol. Opt. Phys. 44(16), 165006 (2011).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, Y. Suzuki, G. Arai, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, L. Liu, and G. O’Sullivan, “Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas,” J. Phys. At. Mol. Opt. Phys. 48(16), 165005 (2015).
[Crossref]

B. Li, T. Higashiguchi, T. Otsuka, N. Yugami, P. Dunne, D. Kilbane, E. Sokell, and G. O’Sullivan, “Analysis of laser produced plasmas of gold in the 1–7 nm region,” J. Phys. At. Mol. Opt. Phys. 47(7), 075001 (2014).
[Crossref]

T. Wu, T. Higashiguchi, B. Li, G. Arai, H. Hara, Y. Kondo, T. Miyazaki, T.-H. Dinh, P. Dunne, F. O’Reilly, E. Sokell, and G. O’Sullivan, “Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses,” J. Phys. At. Mol. Opt. Phys. 49(3), 035001 (2016).
[Crossref]

J. Phys. D Appl. Phys. (2)

I. Kambali, E. Scally, P. Dunne, G. O’Sullivan, P. Sheridan, E. Sokell, and F. O’Reilly, “A tin–gold alloy based EUV source for metrology applications,” J. Phys. D Appl. Phys. 46(49), 495104 (2013).
[Crossref]

V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in EUV sources for microlithography,” J. Phys. D Appl. Phys. 44(25), 253001 (2011).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (3)

A. B. McLay and M. F. Crawford, “Multiplet and hyperfine structure analyses of Bi IV. Discussion of perturbation effects,” Phys. Rev. 44(12), 986–996 (1933).
[Crossref]

G. K. Schoepfle, “The spectra of lead IV and bismuth V,” Phys. Rev. 47(3), 232–234 (1935).
[Crossref]

S. Mrozowski, “Arc spectrum of bismuth Bi I,” Phys. Rev. 62(11–12), 526–534 (1942).
[Crossref]

Phys. Rev. A (1)

Y. Kobayashi, D. Kato, H. A. Sakaue, I. Murakami, and N. Nakamura, “Spectroscopic study of promethiumlike bismuth with an electron-beam ion trap: search for alkali-metal-like resonance lines,” Phys. Rev. A 89(1), 010501 (2014).
[Crossref]

Phys. Scr. (4)

S. S. Churilov and Y. N. Joshi, “Observation of the strongest 5s25p65d-(5s25p55d6s+5s25p67p) transitions in Au XI to Bi XV Ions,” Phys. Scr. 63(5), 363–366 (2001).
[Crossref]

S. S. Churilov, Y. N. Joshi, and J. Reader, “Analysis of 5p65d-(5p65f+5p66p+5p55d2+5p55d6s) transitions in Tl XIII, Pb XIV and Bi XV and revised wavelengths for 5p6 1S0-5p55d(3/2, 5/2)1 transitions in Hg XIII, Tl XIV, Pb XV and Bi XVI,” Phys. Scr. 66(3), 213–221 (2002).
[Crossref]

J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Unresolved transition arrays,” Phys. Scr. 37(5), 659–663 (1988).
[Crossref]

A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57(2), 276–282 (1998).
[Crossref]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

J. Reif, F. Costache, O. Varlamova, G. Jia, and M. Ratzke, “Self-organized regular surface patterning by pulsed laser ablation,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(3), 681–686 (2009).
[Crossref]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

M. F. Crawford and A. B. Mclay, “Spark spectra of bismuth, Bi III and Bi II,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 143(850), 540–557 (1934).
[Crossref]

Proc. SPIE (5)

H. Tanaka, K. Akinaga, A. Takahashi, T. Okada, Hakozaki, and H. Fukuoka, “Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma,” Proc. SPIE 5448, 737–748 (2004).
[Crossref]

P. Mangat, J. Wasson, S. Hector, G. Cardinale, and S. Bajt, “EUV mask fabrication using Be-based multi-layer mirrors,” Proc. SPIE 3997, 814–818 (2000).

C. W. Maloney and B. W. Smith, “Longer wavelength EUV lithography (LW-EUVL),” Proc. SPIE 8332, 83222Z (2012).

M. Chandhok, S. H. Lee, C. Krautschik, G. Zhang, B. J. Rice, M. Goldstein, E. Panning, R. Bristol, A. Stivers, and M. Shell, “Comparison of techniques to measure the point spread function due to scatter and flare in EUV lithography systems,” Proc. SPIE 5374, 854–860 (2004).

F. Barkusky, A. Bayer, S. Döring, B. Flöter, P. Großmann, C. Peth, M. Reese, and K. Mann, “Applications of compact laser-driven EUV/XUV plasma sources,” Proc. SPIE 7361, 736112 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V. Nickles, J. Tümmler, F. Scholz, and F. Scholze, “Spatial and spectral characterization of a laser produced plasma source for extreme ultraviolet metrology,” Rev. Sci. Instrum. 75(11), 4981–4988 (2004).
[Crossref]

Welding Research (1)

M. Essien and P. W. Fuerschbach, “Beam characterization of a materials processing CO2 laser,” Welding Research 75, 47s–54s (1996).

Other (5)

R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, 1981).

K. Ota, Y. Watanabe, H. Franken, and V. Banine, “EUV source requirements,” in Proc. Int. Sematech EUV Source Workshop (2004).

A. Bayer, F. Barkusky, St. Döring, B. Flöter, C. Peth, and K. Mann, “Structural and chemical surface analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference (2009), pp. 1.
[Crossref]

U. Dinger, “Source requirements for next generation AIMS EUV,” in 2014 International Workshop on EUV and Soft X-Ray Sources (2014).

R. Lebert, C. Phiesel, T. Mißalla, C. Piel, A. von Wezyk, K. Bergmann, J. Vieker, S. Danylyuk, S. Herbert, L. Bahrenberg, L. Juschkin, A. Maryasov, and M. Tryus, “XUV research with compact DPP and LPP laboratory sources: complementary to beamlines and large scale industrial tools,” in 2015 International Workshop on EUV Lithography (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental spectra of a bismuth laser produced plasma with a range of power densities created by (a) varying the laser energy and (b) varying the focused spot size.

Fig. 2
Fig. 2

Bi spectra shown in Fig. 1(b) normalized to the maximum intensity in the 8-17 nm range.

Fig. 3
Fig. 3

The ionic populations of Bi ions at six different power densities corresponding to those that generated the spectra seen in Fig. 1(b) and Fig. 2.

Fig. 4
Fig. 4

Comparisons of experimental (black) and theoretical spectra of Bi from ns LPPs at the maximum laser power density for the transition type ∆n = 0, n = 5, 4d104fm-15p1 – 4d104fm-15d1, where m = 14-2 (Bi23+–Bi35+) (green); ∆n = 0, n = 5, 4d104fm-15d1 – 4d104fm-15f1, where m = 14-2 (Bi23+–Bi35+) (red); ∆n = 0, n = 5, 4d104fm-15s1 – 4d104fm-15p1, where m = 14-2 (Bi23+ – Bi35+) (blue) and ∆n = 0, n = 5, 4d104fm-15f1 – 4d104fm-15g1, where m = 14-2 (Bi23+–Bi35+) (purple).

Fig. 5
Fig. 5

Comparisons of experimental (black) and theoretical spectra of Bi from ns LPPs at the minimum laser power density for the transition types: ∆n = 1, n = 5 - n = 6, 5dm – 5dm-16f1 (Bi5+ - Bi14+) (red); ∆n = 0, n = 5, 5pm –5pm-15d1 (Bi16+–Bi20+) (green); ∆n = 0, n = 5, 5sm – 5sm-15p1 (Bi21+–Bi22+) (purple) and ∆n = 0, n = 5, 5p65dm – 5p55dm + 1 (blue) + 5p65dm-15f1 (yellow) (Bi7+–Bi14+).

Fig. 6
Fig. 6

The 5p65d5- (5p55d6 + 5d45f1) configuration interaction in the Bi10+ spectrum, the configurations are not mixed in the upper plot but are mixed in the lower plot. The coordinate ranges are the same for both plots.

Tables (3)

Tables Icon

Table 1 Wavelength ranges (∆λ) of emission from transitions of 4d104fm-15p1 – 4d104fm-15d1, 4d104fm-15d1 – 4d104fm-15f1, 4d104fm-15s1 – 4d104fm-15p1 and 4d104fm-15f1 – 4d104fm-15g1, written in short as 5p-5d, 5d-5f, 5s-5p and 5f-5g respectively in the table, in ions of Bi23+-Bi35+.

Tables Icon

Table 2 Maximum and minimum wavelength (nm) assignment of features from 10.6 to 11.6 nm.

Tables Icon

Table 3 Maximum and minimum wavelength (nm) assignment of features from 12.5 to 15.7 nm.

Metrics