Abstract

Nanoporous gold (NPG) has been reported to provide remarkable fluorescence enhancement of adjacent fluorophores due to the metal-enhanced fluorescence phenomenon (MEF), and the enhancement is related with the characteristic length of nanoporosity. To fully understand the effect of NPG on nearby fluorophores, it is desirable to study systems with well-defined metal-fluorophore distances. In this study we investigated the distance effect by using silica as the spacing layer between fluorophores and NPG. Originating from competition between plasmonic amplifying and metallic quenching, the dye molecule rhodamine 6G was best enhanced by 20-nm SiO2 coated nanoporous gold with the pore size of 36 nm, while the protein phycoerythrin was best enhanced by 15-nm SiO2 coated nanoporous gold with the pore size of 42 nm and the quantum dots were best enhanced by 20-nm SiO2 coated nanoporous gold with the pore size of 42 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced fluorescence in a nanoporous waveguide and its quantitative analysis

Yong Fan, Kazuhiro Hotta, Akira Yamaguchi, and Norio Teramae
Opt. Express 20(12) 12850-12859 (2012)

Metal-enhanced fluorescence of single shell-isolated alloy metal nanoparticle

Chengyun Zhang, Qingyan Han, Caixia Li, Mingdi Zhang, Longxiang Yan, and Hairong Zheng
Appl. Opt. 55(32) 9131-9136 (2016)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Science & Business Media, 2013), Vol. 25.
  2. E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
    [Crossref]
  3. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media 2013).
  4. R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(7), 2676–2684 (2009).
    [Crossref] [PubMed]
  5. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [Crossref] [PubMed]
  6. L. C. Shoute, “Multilayer Substrate-Mediated Tuning Resonance of Plasmon and SERS EF of Nanostructured Silver,” ChemPhysChem 11(12), 2539–2545 (2010).
    [Crossref] [PubMed]
  7. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
    [Crossref] [PubMed]
  8. R. Kötz and D. Kolb, “Electroreflectance of copper, silver, and gold single crystal electrodes,” Z. Phys. Chem. 112(1), 69–83 (1978).
    [Crossref]
  9. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express 14(22), 10825–10830 (2006).
    [Crossref] [PubMed]
  10. T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
    [Crossref] [PubMed]
  11. N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
    [Crossref] [PubMed]
  12. K. Ray, R. Badugu, and J. R. Lakowicz, “Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films,” Langmuir 22(20), 8374–8378 (2006).
    [Crossref] [PubMed]
  13. E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
    [Crossref] [PubMed]
  14. N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods,” ACS Nano 8(8), 8392–8406 (2014).
    [Crossref] [PubMed]
  15. F. Yu, S. Ahl, A.-M. Caminade, J.-P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
    [Crossref] [PubMed]
  16. C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
    [Crossref] [PubMed]
  17. C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, “Size and shape dependent fluorescence quenching of gold nanoparticles on perylene dye,” Adv Opt Mater 1(8), 581–587 (2013).
    [Crossref]
  18. H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
    [Crossref] [PubMed]
  19. S. Lin, H. Sharma, and M. Khine, “Shrink‐Induced Silica Structures for Far‐field Fluorescence Enhancements,” Adv Opt Mater 1(8), 568–572 (2013).
    [Crossref]
  20. J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
    [Crossref] [PubMed]
  21. P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
    [Crossref] [PubMed]
  22. W.-C. Wu and J. B. Tracy, “Large-scale silica overcoating of gold nanorods with tunable shell thicknesses,” Chem. Mater. 27(8), 2888–2894 (2015).
    [Crossref] [PubMed]
  23. D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 3(3), 248–250 (2007).
    [Crossref] [PubMed]
  24. J. Kümmerlen, A. Leitner, H. Brunner, F. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
    [Crossref]
  25. T. Fujita, L.-H. Qian, K. Inoke, J. Erlebacher, and M.-W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
    [Crossref]
  26. F. Jia, C. Yu, Z. Ai, and L. Zhang, “Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity,” Chem. Mater. 19(15), 3648–3653 (2007).
    [Crossref]
  27. M. M. Collinson, “Nanoporous gold electrodes and their applications in analytical chemistry,” Anal. Chem. 2013, 692484 (2013).
  28. R. J. Amjad, M. R. Sahar, M. R. Dousti, S. K. Ghoshal, and M. N. Jamaludin, “Surface enhanced Raman scattering and plasmon enhanced fluorescence in zinc-tellurite glass,” Opt. Express 21(12), 14282–14290 (2013).
    [Crossref] [PubMed]
  29. Y. Fu, J. Zhang, K. Nowaczyk, and J. R. Lakowicz, “Enhanced single molecule fluorescence and reduced observation volumes on nanoporous gold (NPG) films,” Chem. Commun. (Camb.) 49(92), 10874–10876 (2013).
    [Crossref] [PubMed]
  30. X. Y. Lang, P. F. Guan, T. Fujita, and M. W. Chen, “Tailored nanoporous gold for ultrahigh fluorescence enhancement,” Phys. Chem. Chem. Phys. 13(9), 3795–3799 (2011).
    [Crossref] [PubMed]
  31. L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, and T. H. Wang, “Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold,” Adv. Mater. 26(8), 1289–1294 (2014).
    [Crossref] [PubMed]
  32. X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
    [Crossref]
  33. C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
    [Crossref]
  34. H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
    [Crossref] [PubMed]
  35. G. Moula and R. F. Aroca, “Plasmon-enhanced resonance Raman scattering and fluorescence in Langmuir-Blodgett monolayers,” Anal. Chem. 83(1), 284–288 (2011).
    [Crossref] [PubMed]
  36. X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
    [Crossref]
  37. R. A. Cinelli, A. Ferrari, V. Pellegrini, M. Tyagi, M. Giacca, and F. Beltram, “The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level,” Photochem. Photobiol. 71(6), 771–776 (2000).
    [Crossref] [PubMed]

2015 (1)

W.-C. Wu and J. B. Tracy, “Large-scale silica overcoating of gold nanorods with tunable shell thicknesses,” Chem. Mater. 27(8), 2888–2894 (2015).
[Crossref] [PubMed]

2014 (3)

L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, and T. H. Wang, “Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold,” Adv. Mater. 26(8), 1289–1294 (2014).
[Crossref] [PubMed]

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

2013 (6)

C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, “Size and shape dependent fluorescence quenching of gold nanoparticles on perylene dye,” Adv Opt Mater 1(8), 581–587 (2013).
[Crossref]

S. Lin, H. Sharma, and M. Khine, “Shrink‐Induced Silica Structures for Far‐field Fluorescence Enhancements,” Adv Opt Mater 1(8), 568–572 (2013).
[Crossref]

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

M. M. Collinson, “Nanoporous gold electrodes and their applications in analytical chemistry,” Anal. Chem. 2013, 692484 (2013).

R. J. Amjad, M. R. Sahar, M. R. Dousti, S. K. Ghoshal, and M. N. Jamaludin, “Surface enhanced Raman scattering and plasmon enhanced fluorescence in zinc-tellurite glass,” Opt. Express 21(12), 14282–14290 (2013).
[Crossref] [PubMed]

Y. Fu, J. Zhang, K. Nowaczyk, and J. R. Lakowicz, “Enhanced single molecule fluorescence and reduced observation volumes on nanoporous gold (NPG) films,” Chem. Commun. (Camb.) 49(92), 10874–10876 (2013).
[Crossref] [PubMed]

2012 (2)

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

2011 (4)

X. Y. Lang, P. F. Guan, T. Fujita, and M. W. Chen, “Tailored nanoporous gold for ultrahigh fluorescence enhancement,” Phys. Chem. Chem. Phys. 13(9), 3795–3799 (2011).
[Crossref] [PubMed]

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

G. Moula and R. F. Aroca, “Plasmon-enhanced resonance Raman scattering and fluorescence in Langmuir-Blodgett monolayers,” Anal. Chem. 83(1), 284–288 (2011).
[Crossref] [PubMed]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

2010 (3)

X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[Crossref]

L. C. Shoute, “Multilayer Substrate-Mediated Tuning Resonance of Plasmon and SERS EF of Nanostructured Silver,” ChemPhysChem 11(12), 2539–2545 (2010).
[Crossref] [PubMed]

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

2009 (4)

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(7), 2676–2684 (2009).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

2008 (2)

2007 (3)

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref] [PubMed]

F. Jia, C. Yu, Z. Ai, and L. Zhang, “Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity,” Chem. Mater. 19(15), 3648–3653 (2007).
[Crossref]

D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 3(3), 248–250 (2007).
[Crossref] [PubMed]

2006 (3)

Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express 14(22), 10825–10830 (2006).
[Crossref] [PubMed]

K. Ray, R. Badugu, and J. R. Lakowicz, “Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films,” Langmuir 22(20), 8374–8378 (2006).
[Crossref] [PubMed]

F. Yu, S. Ahl, A.-M. Caminade, J.-P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

2004 (1)

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

2000 (1)

R. A. Cinelli, A. Ferrari, V. Pellegrini, M. Tyagi, M. Giacca, and F. Beltram, “The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level,” Photochem. Photobiol. 71(6), 771–776 (2000).
[Crossref] [PubMed]

1993 (1)

J. Kümmerlen, A. Leitner, H. Brunner, F. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

1978 (1)

R. Kötz and D. Kolb, “Electroreflectance of copper, silver, and gold single crystal electrodes,” Z. Phys. Chem. 112(1), 69–83 (1978).
[Crossref]

Abadeer, N. S.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

Ahl, S.

F. Yu, S. Ahl, A.-M. Caminade, J.-P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Ai, Z.

F. Jia, C. Yu, Z. Ai, and L. Zhang, “Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity,” Chem. Mater. 19(15), 3648–3653 (2007).
[Crossref]

Akbay, N.

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

Amjad, R. J.

Aroca, R. F.

G. Moula and R. F. Aroca, “Plasmon-enhanced resonance Raman scattering and fluorescence in Langmuir-Blodgett monolayers,” Anal. Chem. 83(1), 284–288 (2011).
[Crossref] [PubMed]

Aslan, K.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Aussenegg, F.

J. Kümmerlen, A. Leitner, H. Brunner, F. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Ayala-Orozco, C.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Bach, U.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Badugu, R.

K. Ray, R. Badugu, and J. R. Lakowicz, “Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films,” Langmuir 22(20), 8374–8378 (2006).
[Crossref] [PubMed]

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Begley, M. R.

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

Bell, T.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Beltram, F.

R. A. Cinelli, A. Ferrari, V. Pellegrini, M. Tyagi, M. Giacca, and F. Beltram, “The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level,” Photochem. Photobiol. 71(6), 771–776 (2000).
[Crossref] [PubMed]

Bharadwaj, P.

Brennan, M. R.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

Brunner, H.

J. Kümmerlen, A. Leitner, H. Brunner, F. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Caminade, A.-M.

F. Yu, S. Ahl, A.-M. Caminade, J.-P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Centeno, S. P.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

Chen, H.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Chen, M.

L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, and T. H. Wang, “Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold,” Adv. Mater. 26(8), 1289–1294 (2014).
[Crossref] [PubMed]

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[Crossref]

Chen, M. W.

X. Y. Lang, P. F. Guan, T. Fujita, and M. W. Chen, “Tailored nanoporous gold for ultrahigh fluorescence enhancement,” Phys. Chem. Chem. Phys. 13(9), 3795–3799 (2011).
[Crossref] [PubMed]

Chen, M.-W.

T. Fujita, L.-H. Qian, K. Inoke, J. Erlebacher, and M.-W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[Crossref]

Cheng, D.

D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 3(3), 248–250 (2007).
[Crossref] [PubMed]

Cinelli, R. A.

R. A. Cinelli, A. Ferrari, V. Pellegrini, M. Tyagi, M. Giacca, and F. Beltram, “The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level,” Photochem. Photobiol. 71(6), 771–776 (2000).
[Crossref] [PubMed]

Collinson, M. M.

M. M. Collinson, “Nanoporous gold electrodes and their applications in analytical chemistry,” Anal. Chem. 2013, 692484 (2013).

Dai, L.

C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, “Size and shape dependent fluorescence quenching of gold nanoparticles on perylene dye,” Adv Opt Mater 1(8), 581–587 (2013).
[Crossref]

Davis, C. C.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express 14(22), 10825–10830 (2006).
[Crossref] [PubMed]

Day, J. K.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Ding, H.

R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(7), 2676–2684 (2009).
[Crossref] [PubMed]

Dousti, M. R.

Erlebacher, J.

T. Fujita, L.-H. Qian, K. Inoke, J. Erlebacher, and M.-W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[Crossref]

F. Yu, S. Ahl, A.-M. Caminade, J.-P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Ferrari, A.

R. A. Cinelli, A. Ferrari, V. Pellegrini, M. Tyagi, M. Giacca, and F. Beltram, “The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level,” Photochem. Photobiol. 71(6), 771–776 (2000).
[Crossref] [PubMed]

Ferri, C. G.

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Fu, C. C.

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Fu, Y.

Y. Fu, J. Zhang, K. Nowaczyk, and J. R. Lakowicz, “Enhanced single molecule fluorescence and reduced observation volumes on nanoporous gold (NPG) films,” Chem. Commun. (Camb.) 49(92), 10874–10876 (2013).
[Crossref] [PubMed]

Fujita, T.

L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, and T. H. Wang, “Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold,” Adv. Mater. 26(8), 1289–1294 (2014).
[Crossref] [PubMed]

X. Y. Lang, P. F. Guan, T. Fujita, and M. W. Chen, “Tailored nanoporous gold for ultrahigh fluorescence enhancement,” Phys. Chem. Chem. Phys. 13(9), 3795–3799 (2011).
[Crossref] [PubMed]

X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[Crossref]

T. Fujita, L.-H. Qian, K. Inoke, J. Erlebacher, and M.-W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[Crossref]

Geddes, C. D.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Ghosh, S.

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Ghoshal, S. K.

Giacca, M.

R. A. Cinelli, A. Ferrari, V. Pellegrini, M. Tyagi, M. Giacca, and F. Beltram, “The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level,” Photochem. Photobiol. 71(6), 771–776 (2000).
[Crossref] [PubMed]

Gómez, D.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Gopinathan, A.

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Grimes, A.

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Gryczynski, I.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Guan, P.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[Crossref]

Guan, P. F.

X. Y. Lang, P. F. Guan, T. Fujita, and M. W. Chen, “Tailored nanoporous gold for ultrahigh fluorescence enhancement,” Phys. Chem. Chem. Phys. 13(9), 3795–3799 (2011).
[Crossref] [PubMed]

Halas, N. J.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

He, S.

R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(7), 2676–2684 (2009).
[Crossref] [PubMed]

Hofkens, J.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

Hori, H.

Hu, R.

R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(7), 2676–2684 (2009).
[Crossref] [PubMed]

Huang, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Hung, Y.-J.

Hwang, E.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

Inoke, K.

T. Fujita, L.-H. Qian, K. Inoke, J. Erlebacher, and M.-W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[Crossref]

Inouye, Y.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

Iwasaki, H.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

Jamaludin, M. N.

Jia, F.

F. Jia, C. Yu, Z. Ai, and L. Zhang, “Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity,” Chem. Mater. 19(15), 3648–3653 (2007).
[Crossref]

Karg, M.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Kenens, B.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

Khine, M.

S. Lin, H. Sharma, and M. Khine, “Shrink‐Induced Silica Structures for Far‐field Fluorescence Enhancements,” Adv Opt Mater 1(8), 568–572 (2013).
[Crossref]

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Kintaka, K.

Kiyosue, K.

Knight, M. W.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Knoll, W.

F. Yu, S. Ahl, A.-M. Caminade, J.-P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Kolb, D.

R. Kötz and D. Kolb, “Electroreflectance of copper, silver, and gold single crystal electrodes,” Z. Phys. Chem. 112(1), 69–83 (1978).
[Crossref]

Kötz, R.

R. Kötz and D. Kolb, “Electroreflectance of copper, silver, and gold single crystal electrodes,” Z. Phys. Chem. 112(1), 69–83 (1978).
[Crossref]

Kümmerlen, J.

J. Kümmerlen, A. Leitner, H. Brunner, F. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Lakowicz, J. R.

Y. Fu, J. Zhang, K. Nowaczyk, and J. R. Lakowicz, “Enhanced single molecule fluorescence and reduced observation volumes on nanoporous gold (NPG) films,” Chem. Commun. (Camb.) 49(92), 10874–10876 (2013).
[Crossref] [PubMed]

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

K. Ray, R. Badugu, and J. R. Lakowicz, “Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films,” Langmuir 22(20), 8374–8378 (2006).
[Crossref] [PubMed]

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Lang, X.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[Crossref]

Lang, X. Y.

X. Y. Lang, P. F. Guan, T. Fujita, and M. W. Chen, “Tailored nanoporous gold for ultrahigh fluorescence enhancement,” Phys. Chem. Chem. Phys. 13(9), 3795–3799 (2011).
[Crossref] [PubMed]

Lee, L. P.

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Leitner, A.

J. Kümmerlen, A. Leitner, H. Brunner, F. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Li, Q.

C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, “Size and shape dependent fluorescence quenching of gold nanoparticles on perylene dye,” Adv Opt Mater 1(8), 581–587 (2013).
[Crossref]

Lin, H.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

Lin, S.

S. Lin, H. Sharma, and M. Khine, “Shrink‐Induced Silica Structures for Far‐field Fluorescence Enhancements,” Adv Opt Mater 1(8), 568–572 (2013).
[Crossref]

Liu, H.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

Liu, J. G.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Long, M.

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Lukomska, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Majoral, J.-P.

F. Yu, S. Ahl, A.-M. Caminade, J.-P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Malicka, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Matveeva, E.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Ming, T.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Moula, G.

G. Moula and R. F. Aroca, “Plasmon-enhanced resonance Raman scattering and fluorescence in Langmuir-Blodgett monolayers,” Anal. Chem. 83(1), 284–288 (2011).
[Crossref] [PubMed]

Mulvaney, P.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Murphy, C. J.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

Ng, S. H.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Nishii, J.

Nordlander, P.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Novotny, L.

Nowaczyk, K.

Y. Fu, J. Zhang, K. Nowaczyk, and J. R. Lakowicz, “Enhanced single molecule fluorescence and reduced observation volumes on nanoporous gold (NPG) films,” Chem. Commun. (Camb.) 49(92), 10874–10876 (2013).
[Crossref] [PubMed]

Pellegrini, V.

R. A. Cinelli, A. Ferrari, V. Pellegrini, M. Tyagi, M. Giacca, and F. Beltram, “The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level,” Photochem. Photobiol. 71(6), 771–776 (2000).
[Crossref] [PubMed]

Prasad, P. N.

R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(7), 2676–2684 (2009).
[Crossref] [PubMed]

Qian, L.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Qian, L.-H.

T. Fujita, L.-H. Qian, K. Inoke, J. Erlebacher, and M.-W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[Crossref]

Ray, K.

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

K. Ray, R. Badugu, and J. R. Lakowicz, “Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films,” Langmuir 22(20), 8374–8378 (2006).
[Crossref] [PubMed]

Reed, M. L.

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

Reineck, P.

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Rich, B. D.

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Rocha, S.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

Roy, I.

R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(7), 2676–2684 (2009).
[Crossref] [PubMed]

Sahar, M. R.

Seker, E.

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

Sharma, H.

S. Lin, H. Sharma, and M. Khine, “Shrink‐Induced Silica Structures for Far‐field Fluorescence Enhancements,” Adv Opt Mater 1(8), 568–572 (2013).
[Crossref]

Shoute, L. C.

L. C. Shoute, “Multilayer Substrate-Mediated Tuning Resonance of Plasmon and SERS EF of Nanostructured Silver,” ChemPhysChem 11(12), 2539–2545 (2010).
[Crossref] [PubMed]

Sliwa, M.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

Smolyaninov, I. I.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express 14(22), 10825–10830 (2006).
[Crossref] [PubMed]

Song, Y.

L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, and T. H. Wang, “Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold,” Adv. Mater. 26(8), 1289–1294 (2014).
[Crossref] [PubMed]

Su, L.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

Sun, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Tatsu, Y.

Tawa, K.

Tracy, J. B.

W.-C. Wu and J. B. Tracy, “Large-scale silica overcoating of gold nanorods with tunable shell thicknesses,” Chem. Mater. 27(8), 2888–2894 (2015).
[Crossref] [PubMed]

Tyagi, M.

R. A. Cinelli, A. Ferrari, V. Pellegrini, M. Tyagi, M. Giacca, and F. Beltram, “The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level,” Photochem. Photobiol. 71(6), 771–776 (2000).
[Crossref] [PubMed]

Uji-i, H.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

Urbas, A.

C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, “Size and shape dependent fluorescence quenching of gold nanoparticles on perylene dye,” Adv Opt Mater 1(8), 581–587 (2013).
[Crossref]

Wang, J.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Wang, T. H.

L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, and T. H. Wang, “Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold,” Adv. Mater. 26(8), 1289–1294 (2014).
[Crossref] [PubMed]

Wang, Y.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

Wilson, W. L.

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

Wokaun, A.

J. Kümmerlen, A. Leitner, H. Brunner, F. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Wu, H.-C.

Wu, W.-C.

W.-C. Wu and J. B. Tracy, “Large-scale silica overcoating of gold nanorods with tunable shell thicknesses,” Chem. Mater. 27(8), 2888–2894 (2015).
[Crossref] [PubMed]

Xu, Q.-H.

D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 3(3), 248–250 (2007).
[Crossref] [PubMed]

Xue, C.

C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, “Size and shape dependent fluorescence quenching of gold nanoparticles on perylene dye,” Adv Opt Mater 1(8), 581–587 (2013).
[Crossref]

Xue, Q.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

Xue, Y.

C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, “Size and shape dependent fluorescence quenching of gold nanoparticles on perylene dye,” Adv Opt Mater 1(8), 581–587 (2013).
[Crossref]

Yamaguchi, Y.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

Yan, C.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yang, Z.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Yong, K.-T.

R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(7), 2676–2684 (2009).
[Crossref] [PubMed]

Yu, C.

F. Jia, C. Yu, Z. Ai, and L. Zhang, “Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity,” Chem. Mater. 19(15), 3648–3653 (2007).
[Crossref]

Yu, F.

F. Yu, S. Ahl, A.-M. Caminade, J.-P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Zhang, J.

Y. Fu, J. Zhang, K. Nowaczyk, and J. R. Lakowicz, “Enhanced single molecule fluorescence and reduced observation volumes on nanoporous gold (NPG) films,” Chem. Commun. (Camb.) 49(92), 10874–10876 (2013).
[Crossref] [PubMed]

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, and T. H. Wang, “Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold,” Adv. Mater. 26(8), 1289–1294 (2014).
[Crossref] [PubMed]

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[Crossref]

F. Jia, C. Yu, Z. Ai, and L. Zhang, “Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity,” Chem. Mater. 19(15), 3648–3653 (2007).
[Crossref]

Zhang, Y.

L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, and T. H. Wang, “Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold,” Adv. Mater. 26(8), 1289–1294 (2014).
[Crossref] [PubMed]

Zhao, L.

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Zi, J.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

ACS Nano (2)

N. S. Abadeer, M. R. Brennan, W. L. Wilson, and C. J. Murphy, “Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods,” ACS Nano 8(8), 8392–8406 (2014).
[Crossref] [PubMed]

P. Reineck, D. Gómez, S. H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach, “Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles,” ACS Nano 7(8), 6636–6648 (2013).
[Crossref] [PubMed]

Adv Opt Mater (2)

C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, “Size and shape dependent fluorescence quenching of gold nanoparticles on perylene dye,” Adv Opt Mater 1(8), 581–587 (2013).
[Crossref]

S. Lin, H. Sharma, and M. Khine, “Shrink‐Induced Silica Structures for Far‐field Fluorescence Enhancements,” Adv Opt Mater 1(8), 568–572 (2013).
[Crossref]

Adv. Mater. (2)

L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, and T. H. Wang, “Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold,” Adv. Mater. 26(8), 1289–1294 (2014).
[Crossref] [PubMed]

C. C. Fu, A. Grimes, M. Long, C. G. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Anal. Chem. (3)

G. Moula and R. F. Aroca, “Plasmon-enhanced resonance Raman scattering and fluorescence in Langmuir-Blodgett monolayers,” Anal. Chem. 83(1), 284–288 (2011).
[Crossref] [PubMed]

M. M. Collinson, “Nanoporous gold electrodes and their applications in analytical chemistry,” Anal. Chem. 2013, 692484 (2013).

F. Yu, S. Ahl, A.-M. Caminade, J.-P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

T. Fujita, L.-H. Qian, K. Inoke, J. Erlebacher, and M.-W. Chen, “Three-dimensional morphology of nanoporous gold,” Appl. Phys. Lett. 92(25), 251902 (2008).
[Crossref]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

X. Lang, P. Guan, L. Zhang, T. Fujita, and M. Chen, “Size dependence of molecular fluorescence enhancement of nanoporous gold,” Appl. Phys. Lett. 96(7), 073701 (2010).
[Crossref]

Chem. Commun. (Camb.) (2)

Y. Fu, J. Zhang, K. Nowaczyk, and J. R. Lakowicz, “Enhanced single molecule fluorescence and reduced observation volumes on nanoporous gold (NPG) films,” Chem. Commun. (Camb.) 49(92), 10874–10876 (2013).
[Crossref] [PubMed]

D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 3(3), 248–250 (2007).
[Crossref] [PubMed]

Chem. Mater. (2)

W.-C. Wu and J. B. Tracy, “Large-scale silica overcoating of gold nanorods with tunable shell thicknesses,” Chem. Mater. 27(8), 2888–2894 (2015).
[Crossref] [PubMed]

F. Jia, C. Yu, Z. Ai, and L. Zhang, “Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity,” Chem. Mater. 19(15), 3648–3653 (2007).
[Crossref]

ChemPhysChem (2)

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” ChemPhysChem 13(4), 973–981 (2012).
[Crossref] [PubMed]

L. C. Shoute, “Multilayer Substrate-Mediated Tuning Resonance of Plasmon and SERS EF of Nanostructured Silver,” ChemPhysChem 11(12), 2539–2545 (2010).
[Crossref] [PubMed]

J Phys Chem C Nanomater Interfaces (2)

R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells,” J Phys Chem C Nanomater Interfaces 113(7), 2676–2684 (2009).
[Crossref] [PubMed]

N. Akbay, J. R. Lakowicz, and K. Ray, “Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles,” J Phys Chem C Nanomater Interfaces 116(19), 10766–10773 (2012).
[Crossref] [PubMed]

J. Fluoresc. (1)

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Langmuir (1)

K. Ray, R. Badugu, and J. R. Lakowicz, “Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films,” Langmuir 22(20), 8374–8378 (2006).
[Crossref] [PubMed]

Materials (Basel) (1)

E. Seker, M. L. Reed, and M. R. Begley, “Nanoporous gold: fabrication, characterization, and applications,” Materials (Basel) 2(4), 2188–2215 (2009).
[Crossref]

Mol. Phys. (1)

J. Kümmerlen, A. Leitner, H. Brunner, F. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys. 80(5), 1031–1046 (1993).
[Crossref]

Nano Lett. (3)

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14(5), 2926–2933 (2014).
[Crossref] [PubMed]

T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9(11), 3896–3903 (2009).
[Crossref] [PubMed]

Opt. Express (4)

Photochem. Photobiol. (1)

R. A. Cinelli, A. Ferrari, V. Pellegrini, M. Tyagi, M. Giacca, and F. Beltram, “The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization: local fluorescence study at the single-molecule level,” Photochem. Photobiol. 71(6), 771–776 (2000).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

X. Y. Lang, P. F. Guan, T. Fujita, and M. W. Chen, “Tailored nanoporous gold for ultrahigh fluorescence enhancement,” Phys. Chem. Chem. Phys. 13(9), 3795–3799 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au79Ag21 substrate,” Sci. Rep. 1(1), 112 (2011).
[Crossref] [PubMed]

Z. Phys. Chem. (1)

R. Kötz and D. Kolb, “Electroreflectance of copper, silver, and gold single crystal electrodes,” Z. Phys. Chem. 112(1), 69–83 (1978).
[Crossref]

Other (2)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Science & Business Media, 2013), Vol. 25.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science & Business Media 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Top-view SEM micrographs of dealloyed NPG films with an average pore size of (a) ~22nm,(b) ~33nm,(c) ~45 nm. (d) Tunable nanopore size as a function of etching time. The larger pore size resulted from longer etching time and the largest pore size is ~50 nm due to the thickness of Ag65Au35 alloy film is 100 nm.

Fig. 2
Fig. 2

(a) SEM images of 10 nm-SiO2 coated NPG film, and the measured thickness is coincident with the manufactured value by physical vapour deposition. (b) TEM micrograph of selected SiO2@NPG film with the nanopore and ligament sizes of ~42 nm and SiO2 coating of 10 nm. (c) The absorption spectra of bare NPG films with different nanopore sizes. (d)The absorption spectra of 15 nm-SiO2 coated NPG films with different ligament and nanopore sizes.

Fig. 3
Fig. 3

Fluorescence enhancement of R6G on polymer and NPG films with various silica coating, 0, 5, 10, 15, 20, and 25 nm, respectively. Inset shows the fluorescence enhancement factor, which is determined by the ratio between the peak intensity of R6G at 553 nm on SiO2 coated porous films (SiO2@NPG36) and that on polymer. The largest enhancement factor is about 70 from the 20 nm silica coated NPG36 film. (b) Histogram of the fluorescence intensities from R6G on polymer, bare NPG films and SiO2@NPG films. The fluorescence intensities which are determined by the height of R6G emission peak at ~553 nm, and different coloured rectangles are used to distinguish NPG films with different pore sizes.

Fig. 4
Fig. 4

Absorption spectrum of a bare NPG36 and NPG36 covered with 20-nm-thick SiO2 film, and the absorption and emission peaks position of R6G, R-PE and QDs (only Emission). (a) Green, Dark Cyan bars indicate the absorption/emission for R6G molecule and Black bar indicates the excitation in the experiment. (b) Olive, Cyan bars indicate the absorption/emission for R-PE protein and Black bar indicates the excitation in the experiment. (c) Blue bar indicates the emission for QDs and the Black bar indicates the excitation in the experiment. As the absorption of QDs is a decline curve, the excitation (532nm) can motivate the QDs well.

Fig. 5
Fig. 5

The fluorescence spectra and fluorescence enhancement factor of R-PE and QDs on polymer and NPG films with various silica coating, 0, 5, 10, 15, 20, and 25 nm, respectively. (a) The fluorescence spectra of R-PE on NPG42 films with silica coating. (b) The fluorescence enhancement factor of R-PE, which is determined by the ratio between the peak intensity of R-PE at ~575 nm on SiO2 coated porous films (SiO2@NPG42) and that on polymer. (c) The fluorescence spectra of QDs on NPG42 films with silica coating. (d) The fluorescence enhancement factor, which is determined by the ratio between the peak intensity of QDs at ~630 nm on SiO2 coated porous films (SiO2@NPG42) and that on polymer. The numbers in (a) and (c) are the thicknesses of silica.

Fig. 6
Fig. 6

Histogram of the fluorescence intensities from R-PE and QDs on different substrates. (a) Fluorescence intensity of R-PE on polymer, bare NPG and SiO2@NPG films. (b) Fluorescence intensity of QDs on polymer, bare NPG and SiO2@NPG films.

Fig. 7
Fig. 7

(a) SEM iamges of nanoporous gold. (b) Fourier-transformed pattern showing the quasiperiodic feature of nanoporous gold. The inserted intensity profile was taken along the dash arrowhead in the Fourier-transform pattern [25].

Fig. 8
Fig. 8

(a) Fluoresce spectra of R6G on the polymer substrate with silica coating. (b) Fluoresce spectra of R-PE on the polymer substrate with silica coating.

Tables (1)

Tables Icon

Table 1 Energy Disperse Spectroscopy (EDS) analysis of QDs decorated NPG and SiO2@NPG films.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = 1 B * 1 2

Metrics