Abstract

We present a high-speed single pixel flow imager based on an all-optical Haar wavelet transform of moving objects. Spectrally-encoded wavelet measurement patterns are produced by chirp processing of broad-bandwidth mode-locked laser pulses. A complete wavelet pattern set serially illuminates the object via a spectral disperser. This high-rate structured illumination transforms the scene into a set of sparse coefficients. We show that complex scenes can be compressed to less than 30% of their Nyquist rate by thresholding and storing the most significant wavelet coefficients. Moreover by employing temporal multiplexing of the patterns we are able to achieve pixel rates in excess of 360 MPixels/s.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed flow microscopy using compressed sensing with ultrafast laser pulses

Bryan T. Bosworth, Jasper R. Stroud, Dung N. Tran, Trac D. Tran, Sang Chin, and Mark A. Foster
Opt. Express 23(8) 10521-10532 (2015)

All-optical image processing and compression based on Haar wavelet transform

Giorgia Parca, Pedro Teixeira, and Antonio Teixeira
Appl. Opt. 52(12) 2932-2939 (2013)

Efficient adaptation of complex-valued noiselet sensing matrices for compressed single-pixel imaging

Anna Pastuszczak, Bartłomiej Szczygieł, Michał Mikołajczyk, and Rafał Kotyński
Appl. Opt. 55(19) 5141-5148 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
    [Crossref] [PubMed]
  2. M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photonics Technol. Lett. 22(21), 1559–1561 (2010).
    [Crossref]
  3. M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(20), 1439–1441 (2011).
    [Crossref]
  4. L. Ming and J. Yao, “Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a 2-D array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 24(15), 1319–1321 (2012).
    [Crossref]
  5. M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52(27), 6735–6743 (2013).
    [Crossref] [PubMed]
  6. C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
    [Crossref] [PubMed]
  7. L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
    [Crossref]
  8. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
    [Crossref]
  9. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
    [Crossref] [PubMed]
  10. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
    [Crossref] [PubMed]
  11. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).
    [Crossref] [PubMed]
  12. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
    [Crossref] [PubMed]
  13. B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).
    [Crossref] [PubMed]
  14. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
    [Crossref] [PubMed]
  15. Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).
  16. S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989).
    [Crossref]
  17. D. Mendlovic and N. Konforti, “Optical realization of the wavelet transform for two-dimensional objects,” Appl. Opt. 32(32), 6542–6546 (1993).
    [Crossref] [PubMed]
  18. E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64(7), 745–748 (1990).
    [Crossref] [PubMed]
  19. M. Alemohammad and M. A. Foster, “Real-Time Image Compression Based on All-Optical Haar Wavelet Transform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM2I.8.
    [Crossref]
  20. G. Strang and T. Q. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge, 1998).
  21. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
    [Crossref] [PubMed]
  22. C. S. Brès, A. O. Wiberg, J. Coles, and S. Radic, “160-Gb/s optical time division multiplexing and multicasting in parametric amplifiers,” Opt. Express 16(21), 16609–16615 (2008).
    [PubMed]
  23. Q. Guo, H. Chen, Z. Weng, M. Chen, S. Yang, and S. Xie, “Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition,” Opt. Express 23(23), 29639–29646 (2015).
    [Crossref] [PubMed]
  24. T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed sensing,” Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009).
    [Crossref]
  25. M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2008).
    [Crossref]
  26. A. C. S. Chan, A. K. S. Lau, K. K. Y. Wong, E. Y. Lam, and K. K. Tsia, “Arbitrary two-dimensional spectrally encoded pattern generation—a new strategy for high-speed patterned illumination imaging,” Optica 2(12), 1037–1044 (2015).
    [Crossref]
  27. D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
    [Crossref] [PubMed]
  28. N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124(22), 3743–3751 (2011).
    [Crossref] [PubMed]

2017 (1)

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

2016 (1)

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

2015 (6)

2013 (2)

2012 (3)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

L. Ming and J. Yao, “Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a 2-D array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 24(15), 1319–1321 (2012).
[Crossref]

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

2011 (2)

N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124(22), 3743–3751 (2011).
[Crossref] [PubMed]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(20), 1439–1441 (2011).
[Crossref]

2010 (2)

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photonics Technol. Lett. 22(21), 1559–1561 (2010).
[Crossref]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

2009 (1)

T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed sensing,” Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009).
[Crossref]

2008 (3)

2007 (1)

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

2006 (1)

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

1993 (1)

1990 (1)

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64(7), 745–748 (1990).
[Crossref] [PubMed]

1989 (1)

S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989).
[Crossref]

Adam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Argoul, F.

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64(7), 745–748 (1990).
[Crossref] [PubMed]

Arneodo, A.

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64(7), 745–748 (1990).
[Crossref] [PubMed]

Asghari, M. H.

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Baraniuk, R. G.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Baron, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Basiji, D. A.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Blumensath, T.

T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed sensing,” Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009).
[Crossref]

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Bosworth, B. T.

Bowman, R.

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Brady, D.

Brès, C. S.

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Capewell, D.

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Chan, A. C. S.

Chen, C. L.

C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
[Crossref] [PubMed]

Chen, H.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Q. Guo, H. Chen, Z. Weng, M. Chen, S. Yang, and S. Xie, “Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition,” Opt. Express 23(23), 29639–29646 (2015).
[Crossref] [PubMed]

Chen, M.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Q. Guo, H. Chen, Z. Weng, M. Chen, S. Yang, and S. Xie, “Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition,” Opt. Express 23(23), 29639–29646 (2015).
[Crossref] [PubMed]

Cheng, Z.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Chin, S.

Coldren, L. A.

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Coles, J.

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Davies, M. E.

T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed sensing,” Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009).
[Crossref]

Di Carlo, D.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Duarte, M. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Edgar, M. P.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Figueiredo, M. A.

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2008).
[Crossref]

Foster, M. A.

Freysz, E.

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64(7), 745–748 (1990).
[Crossref] [PubMed]

Gibson, G. M.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

Goda, K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Guo, Q.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Q. Guo, H. Chen, Z. Weng, M. Chen, S. Yang, and S. Xie, “Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition,” Opt. Express 23(23), 29639–29646 (2015).
[Crossref] [PubMed]

Guo, Y.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Guzzon, R. S.

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Jalali, B.

C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
[Crossref] [PubMed]

M. H. Asghari and B. Jalali, “Anamorphic transformation and its application to time-bandwidth compression,” Appl. Opt. 52(27), 6735–6743 (2013).
[Crossref] [PubMed]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18(10), 10016–10028 (2010).
[Crossref] [PubMed]

John, R.

Jonathan, P.

Kelly, K. F.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Konforti, N.

Lam, E. Y.

Laska, J. N.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Lau, A. K. S.

Li, M.

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(20), 1439–1441 (2011).
[Crossref]

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photonics Technol. Lett. 22(21), 1559–1561 (2010).
[Crossref]

Liang, L.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Liu, P.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Lu, M.

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Mahjoubfar, A.

C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
[Crossref] [PubMed]

Mallat, S.

S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989).
[Crossref]

Mendlovic, D.

Ming, L.

L. Ming and J. Yao, “Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a 2-D array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 24(15), 1319–1321 (2012).
[Crossref]

Mitchell, K. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

Morrissey, P.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Norberg, E. J.

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Nowak, R. D.

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2008).
[Crossref]

Ortyn, W. E.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Padgett, M. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

Parker, J. S.

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Pouligny, B.

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64(7), 745–748 (1990).
[Crossref] [PubMed]

Radic, S.

Radwell, N.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

Rimon, N.

N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124(22), 3743–3751 (2011).
[Crossref] [PubMed]

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Sarvotham, S.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Schuldiner, M.

N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124(22), 3743–3751 (2011).
[Crossref] [PubMed]

Sollier, E.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Stroud, J. R.

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Sun, B.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

Takhar, D.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Tran, D. N.

Tran, T. D.

Tsia, K. K.

Venkatachalam, V.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

Wagadarikar, A.

Wakin, M. B.

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Wang, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

Wang, Y.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Weilin, L.

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Welsh, S. S.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
[Crossref] [PubMed]

Weng, Z.

Wiberg, A. O.

Willett, R.

Wong, K. K. Y.

Wright, S. J.

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2008).
[Crossref]

Xie, S.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Q. Guo, H. Chen, Z. Weng, M. Chen, S. Yang, and S. Xie, “Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition,” Opt. Express 23(23), 29639–29646 (2015).
[Crossref] [PubMed]

Yang, S.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Q. Guo, H. Chen, Z. Weng, M. Chen, S. Yang, and S. Xie, “Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition,” Opt. Express 23(23), 29639–29646 (2015).
[Crossref] [PubMed]

Yao, J.

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

L. Ming and J. Yao, “Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a 2-D array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 24(15), 1319–1321 (2012).
[Crossref]

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photonics Technol. Lett. 22(21), 1559–1561 (2010).
[Crossref]

Yao, J. P.

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(20), 1439–1441 (2011).
[Crossref]

Yu, Z.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Zhang, Z.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Zhong, J.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Zhu, X.

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

Appl. Comput. Harmon. Anal. (1)

T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed sensing,” Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009).
[Crossref]

Appl. Opt. (3)

Clin. Lab. Med. (1)

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27(3), 653–670 (2007).
[Crossref] [PubMed]

IEEE J. Sel. Top. Signal Process. (1)

M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2008).
[Crossref]

IEEE Photonics J. (1)

Q. Guo, H. Chen, Y. Wang, Y. Guo, P. Liu, X. Zhu, Z. Cheng, Z. Yu, S. Yang, M. Chen, and S. Xie, “High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns,” IEEE Photonics J. 9(1), 1–11 (2017).

IEEE Photonics Technol. Lett. (3)

M. Li and J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photonics Technol. Lett. 22(21), 1559–1561 (2010).
[Crossref]

M. Li and J. P. Yao, “All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23(20), 1439–1441 (2011).
[Crossref]

L. Ming and J. Yao, “Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a 2-D array of cascaded linearly chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 24(15), 1319–1321 (2012).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989).
[Crossref]

J. Cell Sci. (1)

N. Rimon and M. Schuldiner, “Getting the whole picture: combining throughput with content in microscopy,” J. Cell Sci. 124(22), 3743–3751 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Weilin, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics 10(3), 190–195 (2016).
[Crossref]

Opt. Express (5)

Optica (1)

Phys. Rev. Lett. (1)

E. Freysz, B. Pouligny, F. Argoul, and A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64(7), 745–748 (1990).
[Crossref] [PubMed]

PLoS One (1)

C. L. Chen, A. Mahjoubfar, and B. Jalali, “Optical data compression in time stretch imaging,” PLoS One 10(4), e0125106 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. U.S.A. 109(29), 11630–11635 (2012).
[Crossref] [PubMed]

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
[Crossref]

Sci. Rep. (1)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref] [PubMed]

Other (2)

M. Alemohammad and M. A. Foster, “Real-Time Image Compression Based on All-Optical Haar Wavelet Transform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper SM2I.8.
[Crossref]

G. Strang and T. Q. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conceptual representation of an all optical Haar transform image acquisition. Ultra-fast laser pulses are modulated with the binary Haar patterns. These patterns illuminate the flowing scene. Every two laser pulses represent a single Haar basis. The reflected pulse pairs are detected in a balanced detector. Each balanced detection operation represents a single wavelet coefficient.

Fig. 2
Fig. 2

(a) Experimental Setup for the all optical Haar wavelet imager. MLL: Mode-locked laser, PPG: Pulse Pattern Generator, PD: Photodetector, PC: Polarization Controller, MZM: Mach Zehnder Modulator, WS: programmable spectral filter, frep: laser repetition rate. D1 = −853 ps/nm, and D2 = + 853 ps/nm; (b) Various Haar daughter wavelets modulated onto the spectrum of mode locked laser pulses.

Fig. 3
Fig. 3

Simulated effect of flow rate on the image quality for a 1.5 mm tall object at 90-MHz pattern rate.

Fig. 4
Fig. 4

a) Conceptual example of the temporal multiplexing scheme. Middle row represents the patterned pulses at the native laser repetition rate, and the bottom row represents the rate multiplying scheme used in this work in order to increase the Haar rate to 720 MHz. b) 128-bit multiplexing stages used in our experimental setup. frep is the native laser repetition rate, and fmux is the final pattern rate. Insets show the pattern sequence before and after the multiplexing stages. CHiRP represents the ultrafast pulse patterning operation. WS: programmable spectral filter.

Fig. 5
Fig. 5

Conceptual Haar acquisition, compression, and reconstruction.

Fig. 6
Fig. 6

Images of the transparency object moving at 34.3 m/s at different compression factors. (a) Images obtained at 90-MHz sampling rate. Haar transformed figures show the acquired wavelet coefficients for different image rows at various compression levels. (b) Flowing image acquired at 180-MHz sampling rate using optical interleaving of the patterned pulses. Percentages correspond to the image size compared with the compressed data; (c) Peak Signal to Noise Ratio (PSNR) comparison for different compression factors and imaging rates. PSNR is calculated with reference to the uncompressed image.

Fig. 7
Fig. 7

Captured image, and line plot of the elements from group 7 of a USAF resolution target using a 180-MHz Haar transform imager. The target was translated in 250-nm steps.

Fig. 8
Fig. 8

Captured and compressed images of a) high contrast 10 µm microsphere beads at180-MHz, and b) low contrast, 5 µm microsphere beads at 720-MHz rate. Beads were mounted to a mirror and translated across the imaging line at 250-nm per pulse. This is equivalent to ~0.5-m/s flow rate. Compression factors are the average value obtained for all the rows in the image.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ψ(t)={ 1 t[ 0, 1 2 ] 1 t[ 1 2 ,1 ] 0 otherwise
ψ k j = 2 j ψ( 2 (j) tk).
T 8×1 = H 8×8 X 8×1
H 8×8 = 1 8 [ 2 2 2 2 2 2 1 1 ]*[ 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
Rows= L 2nV T rep