Abstract

The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface

Eyal Feigenbaum, Rajesh N. Raman, David Cross, C. W. Carr, and Manyalibo J. Matthews
Opt. Express 24(10) 10527-10536 (2016)

Damage on fused silica optics caused by laser ablation of surface-bound microparticles

Rajesh N. Raman, Stavros G. Demos, Nan Shen, Eyal Feigenbaum, Raluca A. Negres, Selim Elhadj, Alexander M. Rubenchik, and Manyalibo J. Matthews
Opt. Express 24(3) 2634-2647 (2016)

Mechanisms governing the interaction of metallic particles with nanosecond laser pulses

Stavros G. Demos, Raluca A. Negres, Rajesh N. Raman, Nan Shen, Alexander M. Rubenchik, and Manyalibo J. Matthews
Opt. Express 24(7) 7792-7815 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
    [Crossref] [PubMed]
  2. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
    [Crossref] [PubMed]
  3. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  4. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
    [Crossref] [PubMed]
  5. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
    [Crossref]
  6. M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
    [Crossref]
  7. L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
    [Crossref]
  8. C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4Suppl 4), A859–A864 (2011).
    [Crossref] [PubMed]
  9. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
    [Crossref]
  10. R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
    [Crossref] [PubMed]
  11. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [Crossref]
  12. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [Crossref] [PubMed]
  13. C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
    [Crossref]
  14. E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
    [Crossref] [PubMed]
  15. E. Feigenbaum, N. Nielsen, and M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54(28), 8554–8560 (2015).
    [Crossref] [PubMed]
  16. S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
    [Crossref]
  17. B. S. Luk’yanchuck, Laser Cleaning (World Scientific, 2002)
  18. M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
    [Crossref]
  19. R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
    [Crossref] [PubMed]
  20. C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
    [Crossref] [PubMed]
  21. S. G. Demos, R. A. Negres, R. N. Raman, N. Shen, A. M. Rubenchik, and M. J. Matthews, “Mechanisms governing the interaction of metallic particles with nanosecond laser pulses,” Opt. Express 24(7), 7792–7815 (2016).
    [Crossref] [PubMed]
  22. P. M. Celliers, K. G. Estabrook, R. J. Wallace, J. E. Murray, L. B. Da Silva, B. J. Macgowan, B. M. Van Wonterghem, and K. R. Manes, “Spatial filter pinhole for high-energy pulsed lasers,” Appl. Opt. 37(12), 2371–2378 (1998).
    [Crossref] [PubMed]
  23. E. Feigenbaum, R. N. Raman, D. Cross, C. W. Carr, and M. J. Matthews, “Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface,” Opt. Express 24(10), 10527–10536 (2016).
    [Crossref] [PubMed]
  24. A. C. Fischer-Crips, Introduction to Contact Mechanics, 2nd ed. (Springer, 2007)
  25. K. L. Johnson, Contact Mechanics (Cambridge, 1985)
  26. D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
    [Crossref] [PubMed]
  27. C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
    [Crossref]
  28. I. R. Çapoglu and G. S. Smith, “A Total-Field/Scattered-Field Plane-Wave Source for the FDTD Analysis of Layered Media,” IEEE Trans. Antenn. Propag. 56(1), 158–169 (2008).
    [Crossref]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  30. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laserproduced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
    [Crossref]
  31. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
    [Crossref]
  32. W. Dieter, Bäuerle, Laser Processing and Chemistry, 4th ed. (Springer, 2011)
  33. J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
    [Crossref]
  34. W. H. Krueger and S. R. Pollack, “The initial oxidation of aluminum thin films at room temperature,” Surf. Sci. 30(2), 263–279 (1972).
    [Crossref]
  35. O. Grushko, B. Ovsyannikov, and V. Ovchinnikov, Aluminum-Lithium Alloys: Process metallurgy, Physical metallurgy and Welding (CRC Press, 2016).
  36. G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, “Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals,” Phys. Rev. A 61(6), 062107 (2000).
    [Crossref]
  37. L. Bergström, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci. 70, 125–169 (1997).
    [Crossref]

2016 (3)

2015 (5)

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

E. Feigenbaum, N. Nielsen, and M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54(28), 8554–8560 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (2)

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[Crossref] [PubMed]

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

2011 (2)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4Suppl 4), A859–A864 (2011).
[Crossref] [PubMed]

2010 (3)

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

2009 (3)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[Crossref] [PubMed]

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[Crossref]

2008 (1)

I. R. Çapoglu and G. S. Smith, “A Total-Field/Scattered-Field Plane-Wave Source for the FDTD Analysis of Layered Media,” IEEE Trans. Antenn. Propag. 56(1), 158–169 (2008).
[Crossref]

2006 (1)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

2005 (1)

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

2002 (1)

2000 (1)

G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, “Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals,” Phys. Rev. A 61(6), 062107 (2000).
[Crossref]

1998 (1)

1997 (2)

L. Bergström, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci. 70, 125–169 (1997).
[Crossref]

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

1990 (1)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laserproduced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

1988 (1)

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

1972 (1)

W. H. Krueger and S. R. Pollack, “The initial oxidation of aluminum thin films at room temperature,” Surf. Sci. 30(2), 263–279 (1972).
[Crossref]

Abdulla, G. M.

Anderson, G. K.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Ballard, P.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laserproduced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Bartnicki, E.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

Bass, I. L.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[Crossref]

Baxamusa, S.

Bergström, L.

L. Bergström, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci. 70, 125–169 (1997).
[Crossref]

Berthe, L.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

Bertussi, B.

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[Crossref] [PubMed]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

Boarino, L.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Bude, J.

Bude, J. D.

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Çapoglu, I. R.

I. R. Çapoglu and G. S. Smith, “A Total-Field/Scattered-Field Plane-Wave Source for the FDTD Analysis of Layered Media,” IEEE Trans. Antenn. Propag. 56(1), 158–169 (2008).
[Crossref]

Capoulade, J.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

Carr, C. W.

Carr, W.

Celliers, P. M.

Chambonneau, M.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

Corlis, X. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Cormont, P.

Courchinoux, R.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

Cross, D.

Cross, D. A.

Da Silva, L. B.

De Leo, N.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Delaporte, P.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

DeMange, P.

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

Demos, S.

Demos, S. G.

Devaux, D.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laserproduced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Diaz, R.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

Donval, T.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

Elhadj, S.

Estabrook, K. G.

Fabbro, R.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laserproduced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Feigenbaum, E.

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Fournier, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laserproduced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Fujimoto, J.

Grojo, D.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Guss, G.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Guss, G. M.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[Crossref]

Harris, C. D.

Harrison, R. F.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Haynes, L. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Honig, J.

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

King, T. R.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Klimchitskaya, G. L.

G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, “Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals,” Phys. Rev. A 61(6), 062107 (2000).
[Crossref]

Krueger, W. H.

W. H. Krueger and S. R. Pollack, “The initial oxidation of aluminum thin films at room temperature,” Surf. Sci. 30(2), 263–279 (1972).
[Crossref]

Lamaignère, L.

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

Laurence, T.

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Laus, M.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Legros, P.

Liao, Z. M.

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Macgowan, B. J.

Manes, K. R.

Matthews, M. J.

E. Feigenbaum, R. N. Raman, D. Cross, C. W. Carr, and M. J. Matthews, “Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface,” Opt. Express 24(10), 10527–10536 (2016).
[Crossref] [PubMed]

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

S. G. Demos, R. A. Negres, R. N. Raman, N. Shen, A. M. Rubenchik, and M. J. Matthews, “Mechanisms governing the interaction of metallic particles with nanosecond laser pulses,” Opt. Express 24(7), 7792–7815 (2016).
[Crossref] [PubMed]

E. Feigenbaum, N. Nielsen, and M. J. Matthews, “Measurement of optical scattered power from laser-induced shallow pits on silica,” Appl. Opt. 54(28), 8554–8560 (2015).
[Crossref] [PubMed]

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

Menapace, J.

Miller, P.

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Minoshima, K.

Mohideen, U.

G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, “Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals,” Phys. Rev. A 61(6), 062107 (2000).
[Crossref]

Monticelli, M.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Mostepanenko, V. M.

G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, “Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals,” Phys. Rev. A 61(6), 062107 (2000).
[Crossref]

Murray, J. E.

Natoli, J. Y.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

Negres, R. A.

Nielsen, N.

Norton, M. A.

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4Suppl 4), A859–A864 (2011).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Nostrand, M. C.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Nostrand, M. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[Crossref]

Osborne, W. Z.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Palmier, S.

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[Crossref] [PubMed]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

Panzarasa, G.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Peyre, P.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

Phipps, C. R.

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[Crossref]

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Pollack, S. R.

W. H. Krueger and S. R. Pollack, “The initial oxidation of aluminum thin films at room temperature,” Surf. Sci. 30(2), 263–279 (1972).
[Crossref]

Raman, R. N.

Rocci, R.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Rubenchik, A. M.

Rullier, J. L.

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[Crossref] [PubMed]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

Servant, L.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

Shen, N.

S. G. Demos, R. A. Negres, R. N. Raman, N. Shen, A. M. Rubenchik, and M. J. Matthews, “Mechanisms governing the interaction of metallic particles with nanosecond laser pulses,” Opt. Express 24(7), 7792–7815 (2016).
[Crossref] [PubMed]

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

C. D. Harris, N. Shen, A. M. Rubenchik, S. G. Demos, and M. J. Matthews, “Characterization of laser-induced plasmas associated with energetic laser cleaning of metal particles on fused silica surfaces,” Opt. Lett. 40(22), 5212–5215 (2015).
[Crossref] [PubMed]

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Sinko, J. E.

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[Crossref]

Smith, G. S.

I. R. Çapoglu and G. S. Smith, “A Total-Field/Scattered-Field Plane-Wave Source for the FDTD Analysis of Layered Media,” IEEE Trans. Antenn. Propag. 56(1), 158–169 (2008).
[Crossref]

Sparnacci, K.

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Spicochi, K. C.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Staggs, M.

Steele, H. S.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Steele, W.

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Suratwala, T.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Tollier, L.

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

Tovena, I.

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

Turner, T. P.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Van Wonterghem, B. M.

Virmont, J.

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laserproduced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

Wallace, R. J.

Wegner, P. J.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Wegner, P. L.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[Crossref]

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Wong, L.

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Yang, S. T.

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

York, G. W.

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

Adv. Colloid Interface Sci. (1)

L. Bergström, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci. 70, 125–169 (1997).
[Crossref]

Adv. Eng. Mater. (1)

M. J. Matthews, S. T. Yang, N. Shen, S. Elhadj, R. N. Raman, G. Guss, I. L. Bass, M. C. Nostrand, and P. J. Wegner, “Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams,” Adv. Eng. Mater. 17(3), 247–252 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

J. E. Sinko and C. R. Phipps, “Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes,” Appl. Phys. Lett. 95(13), 131105 (2009).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

I. R. Çapoglu and G. S. Smith, “A Total-Field/Scattered-Field Plane-Wave Source for the FDTD Analysis of Layered Media,” IEEE Trans. Antenn. Propag. 56(1), 158–169 (2008).
[Crossref]

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused Silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Appl. Phys. (3)

R. Fabbro, J. Fournier, P. Ballard, D. Devaux, and J. Virmont, “Physical study of laserproduced plasma in confined geometry,” J. Appl. Phys. 68(2), 775–784 (1990).
[Crossref]

L. Berthe, R. Fabbro, P. Peyre, L. Tollier, and E. Bartnicki, “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82(6), 2826–2832 (1997).
[Crossref]

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King, “Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers,” J. Appl. Phys. 64(3), 1083–1096 (1988).
[Crossref]

J. Non-Cryst. Solids (1)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanotechnology (1)

D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotechnology 23(48), 485305 (2012).
[Crossref] [PubMed]

Opt. Express (9)

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

E. Feigenbaum, S. Elhadj, and M. J. Matthews, “Light scattering from laser induced pit ensembles on high power laser optics,” Opt. Express 23(8), 10589–10597 (2015).
[Crossref] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express 19(S4Suppl 4), A859–A864 (2011).
[Crossref] [PubMed]

R. A. Negres, G. M. Abdulla, D. A. Cross, Z. M. Liao, and C. W. Carr, “Probability of growth of small damage sites on the exit surface of fused silica optics,” Opt. Express 20(12), 13030–13039 (2012).
[Crossref] [PubMed]

R. N. Raman, S. G. Demos, N. Shen, E. Feigenbaum, R. A. Negres, S. Elhadj, A. M. Rubenchik, and M. J. Matthews, “Damage on fused silica optics caused by laser ablation of surface-bound microparticles,” Opt. Express 24(3), 2634–2647 (2016).
[Crossref] [PubMed]

S. G. Demos, R. A. Negres, R. N. Raman, N. Shen, A. M. Rubenchik, and M. J. Matthews, “Mechanisms governing the interaction of metallic particles with nanosecond laser pulses,” Opt. Express 24(7), 7792–7815 (2016).
[Crossref] [PubMed]

E. Feigenbaum, R. N. Raman, D. Cross, C. W. Carr, and M. J. Matthews, “Laser-induced Hertzian fractures in silica initiated by metal micro-particles on the exit surface,” Opt. Express 24(10), 10527–10536 (2016).
[Crossref] [PubMed]

S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
[Crossref] [PubMed]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J. L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, “Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals,” Phys. Rev. A 61(6), 062107 (2000).
[Crossref]

Phys. Rev. B (1)

C. W. Carr, J. D. Bude, and P. DeMange, “Laser-supported solid-state absorption fronts in silica,” Phys. Rev. B 82(18), 184304 (2010).
[Crossref]

Proc. SPIE (3)

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. L. Wegner, “An improved method of mitigating laser-induced surface damage growth in fused Silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[Crossref]

L. Lamaignère, M. Chambonneau, R. Diaz, R. Courchinoux, and T. Donval, “Laser damage resistance qualification of large optics for high power Laser,” Proc. SPIE 9345, 934508 (2015).
[Crossref]

S. Palmier, I. Tovena, L. Lamaignère, J. L. Rullier, J. Capoulade, B. Bertussi, J. Y. Natoli, and L. Servant, “Study of laser interaction with aluminum contaminant on fused silica,” Proc. SPIE 5991, 59910R (2005).
[Crossref]

Surf. Sci. (1)

W. H. Krueger and S. R. Pollack, “The initial oxidation of aluminum thin films at room temperature,” Surf. Sci. 30(2), 263–279 (1972).
[Crossref]

Other (6)

O. Grushko, B. Ovsyannikov, and V. Ovchinnikov, Aluminum-Lithium Alloys: Process metallurgy, Physical metallurgy and Welding (CRC Press, 2016).

W. Dieter, Bäuerle, Laser Processing and Chemistry, 4th ed. (Springer, 2011)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

B. S. Luk’yanchuck, Laser Cleaning (World Scientific, 2002)

A. C. Fischer-Crips, Introduction to Contact Mechanics, 2nd ed. (Springer, 2007)

K. L. Johnson, Contact Mechanics (Cambridge, 1985)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A prototypical depth profiles of a narrow (red) and a wide (blue) light-induced shallow pit (LSP) – the wider one showing a ‘shoulder’ formation deviation from a Gaussian-like shape, with a 3D morphology rendering of a wide pit as an inset (based on results from [14]). (b) Rendering of the laser-induced plasma emission from a metal particle on the exit surface of a glass window: the heat absorbed in the metal sphere due to light incident from below creates plasma which expands towards the surface (in red) and propels the particle away from the surface (in black). (c) The configuration of the numerical simulation geometry. The calculated EM fields are recorded within the red bounding rectangle.
Fig. 2
Fig. 2 The simplified plasma emission model (results are for an Al sphere, radius R = 1 μm, input fluence Φin = 1 J/cm2): (a) absorbed energy (log scale, P-polarized); (b) decay length (black dash: predicted value from the Fresnel equations for a flat surface), (c) percentage of the absorbed fluence (from the incident fluence), (d) ablated layer thickness, (e) ablated material energy flux as a function of θ ; (f) emitted plasma pressure projected on the glass surface as a function of x (on surface) normalized by the sphere radius R. The legend in (b) holds also for (c)-(f). The curves are plotted for P and S polarizations, with and without the glass surface. Note that the θ angular span of the lowest hemisphere is [-π,0].
Fig. 3
Fig. 3 2D vs 3D modeling approaches results for an Al sphere on a glass exit surface excited with Φin = 1 J/cm2. (a),(c) absorbed energy density fraction for R = 0.2 μm, and R = 2 μm, accordingly, (b),(d) plasma pressure for R = 0.2 μm, and R = 2 μm, accordingly. The legend in (b) holds also for all other sub-figures: 2D analysis for P (blue) and S (red) excitation, 3D analysis results in the XY plane (magenta, dashed) and the ZY plane (cyan, dashed), both excited in the XY plane.
Fig. 4
Fig. 4 Variation with excitation fluence. R = 1 μm Al sphere on a fused silica surface. S-polarized excitation: (a) ablated layer thickness, (b) plasma pressure; P-polarized excitation: (c) ablated layer thickness, (d) plasma pressure. The legend in (b) holds also for all other sub-figures. The plotted plasma pressure is normalized by its peak value, P0, given in legend. (e) The angular length of the emission arc vs the incident fluence, for both polarizations.
Fig. 5
Fig. 5 Variation in plasma pressure with particle sphere radius. Al sphere on glass surface at Φin = 1 J/cm2 (a-c) and at Φin = 4 J/cm2 (d-f). S and P polarized excitation are compared for different radius: (a,d) R = 0.5 μm; (b,e) R = 1 μm; (c,f) R = 2 μm. The plotted plasma pressure is normalized by its peak value, P0, given in the legend.
Fig. 6
Fig. 6 Variation with air gap between particle and glass surface (lifted particle). R = 1 μm Al sphere, Φin = 1 J/cm2. (a-b) S-polarized, and (c-d) P-polarized excitations. (a,c) absorbed fluence normalized by input fluence; (b,d) plasma pressure. Gap size, g, is given in legend: for S polarization in (b), and for P-polarized in (d).
Fig. 7
Fig. 7 Variation with alumina oxide layer thickness, t, surrounding the particle positioned on the glass exit surface: R = 1 μm Al sphere, Φin = 1 J/cm2. Plasma pressure distribution for (a) S-polarized and (b) P-polarized excitations. (c) Maximal absorbed energy density at the particle surface, and (d) absorptivity as a function of t. (e) E-field intensities distributions outside the metal for different t values (P-polarization).
Fig. 8
Fig. 8 Variation with excitation angle, α. R = 1 μm Al sphere, Φin = 1 J/cm2, on surface. (a-c) S-polarized and (d-f) P-polarized excitations. (a,d) radial decay length, (b,e) absorbed energy density on sphere surface, and (d,f) plasma pressure. α values are given in the legend for S polarization in (c), and for P-polarized in (f).

Metrics