Abstract

We monitored the state of polarization (SOP) of polarized light in an optical ground wire (OPGW) link located in North America using a test method and apparatus that measured Stokes space angular velocity and geographic location of SOP transients. We observed transients up to 5.1 Mrad/s and were able to correlate these events in both time and location to lightning strikes documented by the United States Precision Lightning Network (USPLN).

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demanding response time requirements on coherent receivers due to fast polarization rotations caused by lightning events

Peter M. Krummrich, David Ronnenberg, Wolfgang Schairer, Daniel Wienold, Frank Jenau, and Maximilian Herrmann
Opt. Express 24(11) 12442-12457 (2016)

Real-time fast polarization tracking based on polarization phase locking least mean square algorithm

Jie Li, Tao Zeng, Xiang Li, Lingheng Meng, Ming Luo, Zhixue He, and Shaohua Yu
Opt. Express 27(16) 22116-22126 (2019)

Window-split structured frequency domain Kalman equalization scheme for large PMD and ultra-fast RSOP in an optical coherent PDM-QPSK system

Zibo Zheng, Nan Cui, Hengying Xu, Xiaoguang Zhang, Wenbo Zhang, Lixia Xi, Yuanyuan Fang, and Liangchuan Li
Opt. Express 26(6) 7211-7226 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. M. Krummrich and K. Kotten, “Extremely fast (microsecond timescale) polarization changes in high speed long haul WDM transmission systems,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FI3.
  2. P. M. Krummrich, D. Ronnenberg, W. Schairer, D. Wienold, F. Jenau, and M. Herrmann, “Demanding response time requirements on coherent receivers due to fast polarization rotations caused by lightning events,” Opt. Express 24(11), 12442–12457 (2016).
    [Crossref] [PubMed]
  3. International Telecommunications Union, Optical fibres, cables and systems (ITU, 2009).
  4. J. Wuttke, P. M. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
    [Crossref]
  5. T. Brugière, T. H. R. Crawford, A. Mortelette, M. J. Tanoh, M. Reimer, M. O’Sullivan, D. Doucet, C. Tremblay, D. L. Peterson, T. J. Xia, G. A. Wellbrock, and M. P. Bélanger, “Polarization Activity Monitoring of an Aerial Fiber Link in a Live Network,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu3G.3.
    [Crossref]
  6. L. E. Nelson, M. Birk, S. L. Woodward, and P. Magill, “Field Measurements of Polarization Transients on a Long-Haul Terrestrial Link,” in IEEE Photonic Society 24th Annual Meeting (IEEE,2011), pp. 833–834.
    [Crossref]
  7. H. J. Christian, R. J. Blakeslee, D. J. Boccippio, W. L. Boeck, D. E. Buechler, K. T. Driscoll, S. J. Goodman, J. M. Hall, W. J. Koshak, D. M. Mach, and M. F. Stewart, “Global frequency and distribution of lightning as observed from space by the Optical Transient Detector,” J.Geophys. Res. 108(D1), ACL 4–1-ACL 4–15 (2003).
    [Crossref]
  8. M. Kurono, M. Kuribara, and K. Isawa, “Field Measurements and a Study of Transient State of Polarization Produced in OPGW by Lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
    [Crossref]
  9. R. Ednay, “Field Trial of PMD Test Methods and Investigation Into the Dynamics of Polarization Effects in a Variety of Installed Cable Environments,” in Terena Networking Conference, (2010).
  10. A. A. Jacques, J. P. Koermer, and T. R. Boucher, “Comparison of the United States Precision Lightning Network (USPLN) and the Cloud-to-Ground Lightning Surveillance System(CGLSS-II),” Plymouth State University, (2011).

2016 (1)

2003 (1)

J. Wuttke, P. M. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
[Crossref]

1999 (1)

M. Kurono, M. Kuribara, and K. Isawa, “Field Measurements and a Study of Transient State of Polarization Produced in OPGW by Lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

Ednay, R.

R. Ednay, “Field Trial of PMD Test Methods and Investigation Into the Dynamics of Polarization Effects in a Variety of Installed Cable Environments,” in Terena Networking Conference, (2010).

Herrmann, M.

Isawa, K.

M. Kurono, M. Kuribara, and K. Isawa, “Field Measurements and a Study of Transient State of Polarization Produced in OPGW by Lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

Jenau, F.

Krummrich, P. M.

Kuribara, M.

M. Kurono, M. Kuribara, and K. Isawa, “Field Measurements and a Study of Transient State of Polarization Produced in OPGW by Lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

Kurono, M.

M. Kurono, M. Kuribara, and K. Isawa, “Field Measurements and a Study of Transient State of Polarization Produced in OPGW by Lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

Ronnenberg, D.

Rosch, J.

J. Wuttke, P. M. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
[Crossref]

Schairer, W.

Wienold, D.

Wuttke, J.

J. Wuttke, P. M. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
[Crossref]

Electr. Eng. Jpn. (1)

M. Kurono, M. Kuribara, and K. Isawa, “Field Measurements and a Study of Transient State of Polarization Produced in OPGW by Lightning,” Electr. Eng. Jpn. 128(4), 55–64 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Wuttke, P. M. Krummrich, and J. Rosch, “Polarization oscillations in aerial fiber caused by wind and power-line current,” IEEE Photonics Technol. Lett. 15(6), 882–884 (2003).
[Crossref]

Opt. Express (1)

Other (7)

International Telecommunications Union, Optical fibres, cables and systems (ITU, 2009).

R. Ednay, “Field Trial of PMD Test Methods and Investigation Into the Dynamics of Polarization Effects in a Variety of Installed Cable Environments,” in Terena Networking Conference, (2010).

A. A. Jacques, J. P. Koermer, and T. R. Boucher, “Comparison of the United States Precision Lightning Network (USPLN) and the Cloud-to-Ground Lightning Surveillance System(CGLSS-II),” Plymouth State University, (2011).

T. Brugière, T. H. R. Crawford, A. Mortelette, M. J. Tanoh, M. Reimer, M. O’Sullivan, D. Doucet, C. Tremblay, D. L. Peterson, T. J. Xia, G. A. Wellbrock, and M. P. Bélanger, “Polarization Activity Monitoring of an Aerial Fiber Link in a Live Network,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu3G.3.
[Crossref]

L. E. Nelson, M. Birk, S. L. Woodward, and P. Magill, “Field Measurements of Polarization Transients on a Long-Haul Terrestrial Link,” in IEEE Photonic Society 24th Annual Meeting (IEEE,2011), pp. 833–834.
[Crossref]

H. J. Christian, R. J. Blakeslee, D. J. Boccippio, W. L. Boeck, D. E. Buechler, K. T. Driscoll, S. J. Goodman, J. M. Hall, W. J. Koshak, D. M. Mach, and M. F. Stewart, “Global frequency and distribution of lightning as observed from space by the Optical Transient Detector,” J.Geophys. Res. 108(D1), ACL 4–1-ACL 4–15 (2003).
[Crossref]

P. M. Krummrich and K. Kotten, “Extremely fast (microsecond timescale) polarization changes in high speed long haul WDM transmission systems,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FI3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Not-to-scale schematic of optical system under test.
Fig. 2
Fig. 2 Distribution of peak angular velocity versus month.
Fig. 3
Fig. 3 Stokes parameters of fastest observed transient. (a) Full transient. (b) Close up.
Fig. 4
Fig. 4 Geographical correlation of lightning strikes to transient locations.
Fig. 5
Fig. 5 Lightning strike and state of polarization (SOP) transient distribution.
Fig. 6
Fig. 6 Mean lightning strike distance from cable path.
Fig. 7
Fig. 7 Mean lightning strike intensity along the cable path.

Tables (2)

Tables Icon

Table 1 Per Month Details

Tables Icon

Table 2 Lightning Polarity Statistics

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H ( f ) = sin ( π f L ) L sin ( π f ) , L = 16 , 0 f 0.5
θ n = cos 1 ( 1 | s n s n 1 | 2 2 )
C s = U t T w T s L w L p = 33471 2 s 388 s 16 km 506 km 6

Metrics