Abstract

This study investigates the general mechanism of Direct Laser Interference Patterning (DLIP) involved in the structuring process of polymer materials. An empirical model is developed taking into account experimental observations of DLIP-treated pigmented and transparent polycarbonate substrates with UV (263 nm) and IR (1053 nm) laser radiation. Depending on the used laser processing conditions, the type of material as well as the spatial period of the interference pattern, four different structuring mechanisms can be identified. The treated surfaces are investigated using confocal microscopy, scanning electron microscopy and focus ion beam and as a result from the experimental data analysis, the developed model predicts the material surface topography after the patterning process, by means of a set of material-dependent coefficients.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of diffraction based security elements using direct laser interference patterning

Florian Rößler, Tim Kunze, and Andrés Fabián Lasagni
Opt. Express 25(19) 22959-22970 (2017)

Laser microstructured metal thin films as promising alternative for indium based transparent electrodes

Sebastian Eckhardt, Mathias Siebold, and Andrés Fabián Lasagni
Opt. Express 24(6) A553-A568 (2016)

Spontaneous photoinduced patterning of azo-dye polymer films: the facts

Christophe Hubert, Céline Fiorini-Debuisschert, Licinio Rocha, Paul Raimond, and Jean-Michel Nunzi
J. Opt. Soc. Am. B 24(8) 1839-1846 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
    [Crossref]
  2. S. C. Singh, H. Zeng, C. Guo, W. Cai, Nanomaterials: Laser-Induced Nano/Microfabrications (Wiley-VCH Verlag GmbH & Co. KGaA, 2012).
  3. M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D Direct Laser Writing of Nano- and Microstructured Hierarchical Gecko-Mimicking Surfaces,” Small 8(19), 3009–3015 (2012).
    [Crossref] [PubMed]
  4. K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion,” Soft Matter 5(7), 1386–1393 (2009).
    [Crossref]
  5. A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Res. Appl. 23, 1649–1659 (2015).
  6. W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
    [Crossref]
  7. A. Marmur, “The Lotus effect: superhydrophobicity and metastability,” Langmuir 20(9), 3517–3519 (2004).
    [Crossref] [PubMed]
  8. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
    [Crossref] [PubMed]
  9. Y. C. Jung and B. Bhushan, “Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity,” Nanotechnology 17(19), 4970–4980 (2006).
    [Crossref]
  10. I. Etsion, G. Halperin, and E. Becker, “Testing piston rings with partial laser surface texturing for friction reduction,” Wear 261, 7–8 (2006).
  11. A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact,” Tribol. Int. 38(3), 219–225 (2005).
    [Crossref]
  12. B. Podgornik, B. Zajec, S. Strnad, and K. Stana-Kleinschek, “Influence of surface energy on the interactions between hard coatings and lubricants,” Wear 262(9-10), 1199–1204 (2007).
    [Crossref]
  13. C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, “Low-friction flows of liquid at nanopatterned interfaces,” Nat. Mater. 2(4), 238–240 (2003).
    [Crossref] [PubMed]
  14. A. F. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
    [Crossref]
  15. S. Eckhardt, C. Sachse, and A. F. Lasagni, “Light management in transparent conducting oxides by direct fabrication of periodic surface arrays,” Phys. Proc. 41, 552–557 (2013).
    [Crossref]
  16. T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, and A. Lasagni, “Laser interference induced nano-crystallized surface swellings of amorphous carbon for advanced micro tribology,” Mat. Res. Expr. 1(3), 035042 (2014).
    [Crossref]
  17. A. F. Lasagni and F. A. Lasagni, Fabrication and Characterization in the Micro-Nano Range (Springer-Verlag, 2011).
  18. M. Soldera, K. Taretto, J. Berger, and A. F. Lasagni, “Potential of Photocurrent Improvement in μc‐Si: H Solar Cells with TCO Substrates Structured by Direct Laser Interference Patterning,” Adv. Mater. Eng. 18(9), 1674–1682 (2016).
    [Crossref]
  19. M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
    [Crossref]
  20. A. F. Lasagni, T. Roch, D. Langheinrich, M. Bieda, and A. Wetzig, “Large area direct fabrication of periodic arrays using interference patterning,” Phys. Procedia 12, 214–220 (2011).
    [Crossref]
  21. B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-Laser 4-beam-Interference Ablation as a Flexible Tool for Thin Film Microcstructuring,” Phys. Procedia 12, 116–124 (2011).
    [Crossref]
  22. A. F. Lasagni, A. Manzoni, and F. Mücklich, “Micro/Nano Fabrication of Periodic Hierarchical Structures by Multi-Pulsed Laser Interference Structuring,” Adv. Eng. Mater. 10(9), 872–875 (2007).
    [Crossref]
  23. A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
    [Crossref]
  24. T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
    [Crossref] [PubMed]
  25. K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Polymer-templated hydrothermal growth of vertically aligned single-crystal zno nanorods and morphological transformations using structural polarity,” Adv. Funct. Mater. 20(18), 3055–3063 (2010).
    [Crossref]
  26. D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
    [Crossref]
  27. K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, “Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Opt. Express 15(21), 13838–13843 (2007).
    [Crossref] [PubMed]
  28. R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21(1), 015010 (2011).
    [Crossref]
  29. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
    [Crossref]
  30. L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
    [Crossref]
  31. E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
    [Crossref]
  32. M. Maldovan, C. K. Ullal, J. H. Jang, and E. L. Thomas, “Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography,” Adv. Mater. 19(22), 3809–3813 (2007).
    [Crossref]
  33. A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “Direct patterning of polystyrene–polymethyl methacrylate copolymer by means of laser interference lithography using UV laser irradiation,” Polym. Eng. Sci. 48(12), 2367–2372 (2008).
    [Crossref]
  34. M. F. Broglia, D. F. Acevedo, D. Langheinrich, H. R. Perez-Hernandez, C. A. Barbero, and A. F. Lasagni, “Rapid Fabrication of Periodic Patterns on Poly (styrene-co-acrylonitrile) Surfaces Using Direct Laser Interference Patterning,” Int. J. Polym. Sci. 2015, 721035 (2015).
    [Crossref]
  35. V. Lang, T. Roch, and A. F. Lasagni, “High‐Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min−1 Fabrication Speed Barrier,” Adv. Eng. Mater. 18(8), 1342–1348 (2016).
    [Crossref]
  36. A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
    [Crossref]
  37. F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys., A Mater. Sci. Process. 68(6), 709–713 (1999).
    [Crossref]
  38. J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
    [Crossref] [PubMed]
  39. D. Bäuerle, Laser Processing and Chemistry (Springer-Verlag, 2000).
  40. A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
    [Crossref]
  41. H. Mishina and T. Asakura, “Two gaussian beam interference,” Nouv. Rev. Optique 5(2), 101–107 (1974).
    [Crossref]

2016 (3)

M. Soldera, K. Taretto, J. Berger, and A. F. Lasagni, “Potential of Photocurrent Improvement in μc‐Si: H Solar Cells with TCO Substrates Structured by Direct Laser Interference Patterning,” Adv. Mater. Eng. 18(9), 1674–1682 (2016).
[Crossref]

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

V. Lang, T. Roch, and A. F. Lasagni, “High‐Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min−1 Fabrication Speed Barrier,” Adv. Eng. Mater. 18(8), 1342–1348 (2016).
[Crossref]

2015 (3)

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

M. F. Broglia, D. F. Acevedo, D. Langheinrich, H. R. Perez-Hernandez, C. A. Barbero, and A. F. Lasagni, “Rapid Fabrication of Periodic Patterns on Poly (styrene-co-acrylonitrile) Surfaces Using Direct Laser Interference Patterning,” Int. J. Polym. Sci. 2015, 721035 (2015).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Res. Appl. 23, 1649–1659 (2015).

2014 (3)

A. F. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, and A. Lasagni, “Laser interference induced nano-crystallized surface swellings of amorphous carbon for advanced micro tribology,” Mat. Res. Expr. 1(3), 035042 (2014).
[Crossref]

2013 (2)

S. Eckhardt, C. Sachse, and A. F. Lasagni, “Light management in transparent conducting oxides by direct fabrication of periodic surface arrays,” Phys. Proc. 41, 552–557 (2013).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

2012 (3)

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D Direct Laser Writing of Nano- and Microstructured Hierarchical Gecko-Mimicking Surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]

2011 (5)

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21(1), 015010 (2011).
[Crossref]

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

A. F. Lasagni, T. Roch, D. Langheinrich, M. Bieda, and A. Wetzig, “Large area direct fabrication of periodic arrays using interference patterning,” Phys. Procedia 12, 214–220 (2011).
[Crossref]

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-Laser 4-beam-Interference Ablation as a Flexible Tool for Thin Film Microcstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

2010 (2)

K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Polymer-templated hydrothermal growth of vertically aligned single-crystal zno nanorods and morphological transformations using structural polarity,” Adv. Funct. Mater. 20(18), 3055–3063 (2010).
[Crossref]

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
[Crossref]

2009 (1)

K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion,” Soft Matter 5(7), 1386–1393 (2009).
[Crossref]

2008 (1)

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “Direct patterning of polystyrene–polymethyl methacrylate copolymer by means of laser interference lithography using UV laser irradiation,” Polym. Eng. Sci. 48(12), 2367–2372 (2008).
[Crossref]

2007 (5)

K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen, and T. Jaaskelainen, “Enhanced optical absorptance of metals using interferometric femtosecond ablation,” Opt. Express 15(21), 13838–13843 (2007).
[Crossref] [PubMed]

M. Maldovan, C. K. Ullal, J. H. Jang, and E. L. Thomas, “Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography,” Adv. Mater. 19(22), 3809–3813 (2007).
[Crossref]

A. F. Lasagni, A. Manzoni, and F. Mücklich, “Micro/Nano Fabrication of Periodic Hierarchical Structures by Multi-Pulsed Laser Interference Structuring,” Adv. Eng. Mater. 10(9), 872–875 (2007).
[Crossref]

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

B. Podgornik, B. Zajec, S. Strnad, and K. Stana-Kleinschek, “Influence of surface energy on the interactions between hard coatings and lubricants,” Wear 262(9-10), 1199–1204 (2007).
[Crossref]

2006 (3)

Y. C. Jung and B. Bhushan, “Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity,” Nanotechnology 17(19), 4970–4980 (2006).
[Crossref]

I. Etsion, G. Halperin, and E. Becker, “Testing piston rings with partial laser surface texturing for friction reduction,” Wear 261, 7–8 (2006).

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
[Crossref]

2005 (1)

A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact,” Tribol. Int. 38(3), 219–225 (2005).
[Crossref]

2004 (1)

A. Marmur, “The Lotus effect: superhydrophobicity and metastability,” Langmuir 20(9), 3517–3519 (2004).
[Crossref] [PubMed]

2003 (1)

C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, “Low-friction flows of liquid at nanopatterned interfaces,” Nat. Mater. 2(4), 238–240 (2003).
[Crossref] [PubMed]

1999 (1)

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys., A Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

1997 (1)

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
[Crossref]

1995 (1)

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

1974 (1)

H. Mishina and T. Asakura, “Two gaussian beam interference,” Nouv. Rev. Optique 5(2), 101–107 (1974).
[Crossref]

Acevedo, D. F.

M. F. Broglia, D. F. Acevedo, D. Langheinrich, H. R. Perez-Hernandez, C. A. Barbero, and A. F. Lasagni, “Rapid Fabrication of Periodic Patterns on Poly (styrene-co-acrylonitrile) Surfaces Using Direct Laser Interference Patterning,” Int. J. Polym. Sci. 2015, 721035 (2015).
[Crossref]

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “Direct patterning of polystyrene–polymethyl methacrylate copolymer by means of laser interference lithography using UV laser irradiation,” Polym. Eng. Sci. 48(12), 2367–2372 (2008).
[Crossref]

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

Ajayi, O.

A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact,” Tribol. Int. 38(3), 219–225 (2005).
[Crossref]

Asakura, T.

H. Mishina and T. Asakura, “Two gaussian beam interference,” Nouv. Rev. Optique 5(2), 101–107 (1974).
[Crossref]

Balciunas, E.

E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]

Baltriukiene, D.

E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]

Barbero, C. A.

M. F. Broglia, D. F. Acevedo, D. Langheinrich, H. R. Perez-Hernandez, C. A. Barbero, and A. F. Lasagni, “Rapid Fabrication of Periodic Patterns on Poly (styrene-co-acrylonitrile) Surfaces Using Direct Laser Interference Patterning,” Int. J. Polym. Sci. 2015, 721035 (2015).
[Crossref]

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “Direct patterning of polystyrene–polymethyl methacrylate copolymer by means of laser interference lithography using UV laser irradiation,” Polym. Eng. Sci. 48(12), 2367–2372 (2008).
[Crossref]

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

Barrat, J.-L.

C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, “Low-friction flows of liquid at nanopatterned interfaces,” Nat. Mater. 2(4), 238–240 (2003).
[Crossref] [PubMed]

Barthlott, W.

K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion,” Soft Matter 5(7), 1386–1393 (2009).
[Crossref]

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
[Crossref]

Becker, E.

I. Etsion, G. Halperin, and E. Becker, “Testing piston rings with partial laser surface texturing for friction reduction,” Wear 261, 7–8 (2006).

Beinhorn, F.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys., A Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

Benke, D.

A. F. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

Berger, J.

M. Soldera, K. Taretto, J. Berger, and A. F. Lasagni, “Potential of Photocurrent Improvement in μc‐Si: H Solar Cells with TCO Substrates Structured by Direct Laser Interference Patterning,” Adv. Mater. Eng. 18(9), 1674–1682 (2016).
[Crossref]

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

Beyer, E.

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

A. F. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

Bhushan, B.

K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion,” Soft Matter 5(7), 1386–1393 (2009).
[Crossref]

Y. C. Jung and B. Bhushan, “Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity,” Nanotechnology 17(19), 4970–4980 (2006).
[Crossref]

Bieda, M.

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

A. F. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

A. F. Lasagni, T. Roch, D. Langheinrich, M. Bieda, and A. Wetzig, “Large area direct fabrication of periodic arrays using interference patterning,” Phys. Procedia 12, 214–220 (2011).
[Crossref]

Bocquet, L.

C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, “Low-friction flows of liquid at nanopatterned interfaces,” Nat. Mater. 2(4), 238–240 (2003).
[Crossref] [PubMed]

Broglia, M. F.

M. F. Broglia, D. F. Acevedo, D. Langheinrich, H. R. Perez-Hernandez, C. A. Barbero, and A. F. Lasagni, “Rapid Fabrication of Periodic Patterns on Poly (styrene-co-acrylonitrile) Surfaces Using Direct Laser Interference Patterning,” Int. J. Polym. Sci. 2015, 721035 (2015).
[Crossref]

Brueck, S. R. J.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Bukelskiene, V.

E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]

Cashmore, J. S.

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

Charlaix, E.

C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, “Low-friction flows of liquid at nanopatterned interfaces,” Nat. Mater. 2(4), 238–240 (2003).
[Crossref] [PubMed]

Chen, Q.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Costela, A.

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

Cottin-Bizonne, C.

C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, “Low-friction flows of liquid at nanopatterned interfaces,” Nat. Mater. 2(4), 238–240 (2003).
[Crossref] [PubMed]

Das, S.

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21(1), 015010 (2011).
[Crossref]

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
[Crossref]

Ding, Y.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
[Crossref]

Dou, F.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Eckhardt, S.

S. Eckhardt, C. Sachse, and A. F. Lasagni, “Light management in transparent conducting oxides by direct fabrication of periodic surface arrays,” Phys. Proc. 41, 552–557 (2013).
[Crossref]

Erdemir, A.

A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact,” Tribol. Int. 38(3), 219–225 (2005).
[Crossref]

Etsion, I.

I. Etsion, G. Halperin, and E. Becker, “Testing piston rings with partial laser surface texturing for friction reduction,” Wear 261, 7–8 (2006).

A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact,” Tribol. Int. 38(3), 219–225 (2005).
[Crossref]

Fenske, G.

A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact,” Tribol. Int. 38(3), 219–225 (2005).
[Crossref]

Figuera, J. M.

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

Florido, F.

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

García-Moreno, I.

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

Gedvilas, M.

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-Laser 4-beam-Interference Ablation as a Flexible Tool for Thin Film Microcstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Guenther, K.

T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, and A. Lasagni, “Laser interference induced nano-crystallized surface swellings of amorphous carbon for advanced micro tribology,” Mat. Res. Expr. 1(3), 035042 (2014).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Guo, L.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Guo, R.

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21(1), 015010 (2011).
[Crossref]

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
[Crossref]

Halperin, G.

I. Etsion, G. Halperin, and E. Becker, “Testing piston rings with partial laser surface texturing for friction reduction,” Wear 261, 7–8 (2006).

Hölscher, H.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D Direct Laser Writing of Nano- and Microstructured Hierarchical Gecko-Mimicking Surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

Hong, M. H.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
[Crossref]

Hooker, S. M.

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

Ihlemann, J.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys., A Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

Indrisiunas, S.

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-Laser 4-beam-Interference Ablation as a Flexible Tool for Thin Film Microcstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Ingenito, A.

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Res. Appl. 23, 1649–1659 (2015).

Isabella, O.

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Res. Appl. 23, 1649–1659 (2015).

Jaaskelainen, T.

Jang, J. H.

M. Maldovan, C. K. Ullal, J. H. Jang, and E. L. Thomas, “Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography,” Adv. Mater. 19(22), 3809–3813 (2007).
[Crossref]

Jeong, H.

K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Polymer-templated hydrothermal growth of vertically aligned single-crystal zno nanorods and morphological transformations using structural polarity,” Adv. Funct. Mater. 20(18), 3055–3063 (2010).
[Crossref]

Jeong, M. S.

K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Polymer-templated hydrothermal growth of vertically aligned single-crystal zno nanorods and morphological transformations using structural polarity,” Adv. Funct. Mater. 20(18), 3055–3063 (2010).
[Crossref]

Jiang, F.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Jiang, H.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Jung, G. Y.

K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Polymer-templated hydrothermal growth of vertically aligned single-crystal zno nanorods and morphological transformations using structural polarity,” Adv. Funct. Mater. 20(18), 3055–3063 (2010).
[Crossref]

Jung, Y. C.

K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion,” Soft Matter 5(7), 1386–1393 (2009).
[Crossref]

Y. C. Jung and B. Bhushan, “Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity,” Nanotechnology 17(19), 4970–4980 (2006).
[Crossref]

Kaakkunen, J. J. J.

Kim, K. S.

K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Polymer-templated hydrothermal growth of vertically aligned single-crystal zno nanorods and morphological transformations using structural polarity,” Adv. Funct. Mater. 20(18), 3055–3063 (2010).
[Crossref]

Klein, F.

T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, and A. Lasagni, “Laser interference induced nano-crystallized surface swellings of amorphous carbon for advanced micro tribology,” Mat. Res. Expr. 1(3), 035042 (2014).
[Crossref]

Koch, K.

K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion,” Soft Matter 5(7), 1386–1393 (2009).
[Crossref]

Kovalchenko, A.

A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact,” Tribol. Int. 38(3), 219–225 (2005).
[Crossref]

Ku, Z.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Kuittinen, M.

Kunze, T.

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

Lang, V.

V. Lang, T. Roch, and A. F. Lasagni, “High‐Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min−1 Fabrication Speed Barrier,” Adv. Eng. Mater. 18(8), 1342–1348 (2016).
[Crossref]

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

Langheinrich, D.

M. F. Broglia, D. F. Acevedo, D. Langheinrich, H. R. Perez-Hernandez, C. A. Barbero, and A. F. Lasagni, “Rapid Fabrication of Periodic Patterns on Poly (styrene-co-acrylonitrile) Surfaces Using Direct Laser Interference Patterning,” Int. J. Polym. Sci. 2015, 721035 (2015).
[Crossref]

A. F. Lasagni, T. Roch, D. Langheinrich, M. Bieda, and A. Wetzig, “Large area direct fabrication of periodic arrays using interference patterning,” Phys. Procedia 12, 214–220 (2011).
[Crossref]

Lasagni, A.

T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, and A. Lasagni, “Laser interference induced nano-crystallized surface swellings of amorphous carbon for advanced micro tribology,” Mat. Res. Expr. 1(3), 035042 (2014).
[Crossref]

Lasagni, A. F.

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

M. Soldera, K. Taretto, J. Berger, and A. F. Lasagni, “Potential of Photocurrent Improvement in μc‐Si: H Solar Cells with TCO Substrates Structured by Direct Laser Interference Patterning,” Adv. Mater. Eng. 18(9), 1674–1682 (2016).
[Crossref]

V. Lang, T. Roch, and A. F. Lasagni, “High‐Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min−1 Fabrication Speed Barrier,” Adv. Eng. Mater. 18(8), 1342–1348 (2016).
[Crossref]

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

M. F. Broglia, D. F. Acevedo, D. Langheinrich, H. R. Perez-Hernandez, C. A. Barbero, and A. F. Lasagni, “Rapid Fabrication of Periodic Patterns on Poly (styrene-co-acrylonitrile) Surfaces Using Direct Laser Interference Patterning,” Int. J. Polym. Sci. 2015, 721035 (2015).
[Crossref]

A. F. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

S. Eckhardt, C. Sachse, and A. F. Lasagni, “Light management in transparent conducting oxides by direct fabrication of periodic surface arrays,” Phys. Proc. 41, 552–557 (2013).
[Crossref]

A. F. Lasagni, T. Roch, D. Langheinrich, M. Bieda, and A. Wetzig, “Large area direct fabrication of periodic arrays using interference patterning,” Phys. Procedia 12, 214–220 (2011).
[Crossref]

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “Direct patterning of polystyrene–polymethyl methacrylate copolymer by means of laser interference lithography using UV laser irradiation,” Polym. Eng. Sci. 48(12), 2367–2372 (2008).
[Crossref]

A. F. Lasagni, A. Manzoni, and F. Mücklich, “Micro/Nano Fabrication of Periodic Hierarchical Structures by Multi-Pulsed Laser Interference Structuring,” Adv. Eng. Mater. 10(9), 872–875 (2007).
[Crossref]

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

Lee, S. C.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Li, X.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Lim, C. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
[Crossref]

Lin, Y.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
[Crossref]

Liu, B.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Lukyanchuk, B. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
[Crossref]

Luther, K.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys., A Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

Maldovan, M.

M. Maldovan, C. K. Ullal, J. H. Jang, and E. L. Thomas, “Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography,” Adv. Mater. 19(22), 3809–3813 (2007).
[Crossref]

Malinauskas, M.

E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]

Manzoni, A.

A. F. Lasagni, A. Manzoni, and F. Mücklich, “Micro/Nano Fabrication of Periodic Hierarchical Structures by Multi-Pulsed Laser Interference Structuring,” Adv. Eng. Mater. 10(9), 872–875 (2007).
[Crossref]

Marmur, A.

A. Marmur, “The Lotus effect: superhydrophobicity and metastability,” Langmuir 20(9), 3517–3519 (2004).
[Crossref] [PubMed]

Mei, X.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Mishina, H.

H. Mishina and T. Asakura, “Two gaussian beam interference,” Nouv. Rev. Optique 5(2), 101–107 (1974).
[Crossref]

Mücklich, F.

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “Direct patterning of polystyrene–polymethyl methacrylate copolymer by means of laser interference lithography using UV laser irradiation,” Polym. Eng. Sci. 48(12), 2367–2372 (2008).
[Crossref]

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

A. F. Lasagni, A. Manzoni, and F. Mücklich, “Micro/Nano Fabrication of Periodic Hierarchical Structures by Multi-Pulsed Laser Interference Structuring,” Adv. Eng. Mater. 10(9), 872–875 (2007).
[Crossref]

Mühl, T.

T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, and A. Lasagni, “Laser interference induced nano-crystallized surface swellings of amorphous carbon for advanced micro tribology,” Mat. Res. Expr. 1(3), 035042 (2014).
[Crossref]

Neinhuis, C.

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
[Crossref]

Paivasaari, K.

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Perez-Hernandez, H. R.

M. F. Broglia, D. F. Acevedo, D. Langheinrich, H. R. Perez-Hernandez, C. A. Barbero, and A. F. Lasagni, “Rapid Fabrication of Periodic Patterns on Poly (styrene-co-acrylonitrile) Surfaces Using Direct Laser Interference Patterning,” Int. J. Polym. Sci. 2015, 721035 (2015).
[Crossref]

Podgornik, B.

B. Podgornik, B. Zajec, S. Strnad, and K. Stana-Kleinschek, “Influence of surface energy on the interactions between hard coatings and lubricants,” Wear 262(9-10), 1199–1204 (2007).
[Crossref]

Raciukaitis, G.

E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-Laser 4-beam-Interference Ablation as a Flexible Tool for Thin Film Microcstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Rahman, M.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
[Crossref]

Roch, A.

T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, and A. Lasagni, “Laser interference induced nano-crystallized surface swellings of amorphous carbon for advanced micro tribology,” Mat. Res. Expr. 1(3), 035042 (2014).
[Crossref]

Roch, T.

V. Lang, T. Roch, and A. F. Lasagni, “High‐Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min−1 Fabrication Speed Barrier,” Adv. Eng. Mater. 18(8), 1342–1348 (2016).
[Crossref]

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, and A. Lasagni, “Laser interference induced nano-crystallized surface swellings of amorphous carbon for advanced micro tribology,” Mat. Res. Expr. 1(3), 035042 (2014).
[Crossref]

A. F. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

A. F. Lasagni, T. Roch, D. Langheinrich, M. Bieda, and A. Wetzig, “Large area direct fabrication of periodic arrays using interference patterning,” Phys. Procedia 12, 214–220 (2011).
[Crossref]

Röhrig, M.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D Direct Laser Writing of Nano- and Microstructured Hierarchical Gecko-Mimicking Surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

Sachse, C.

S. Eckhardt, C. Sachse, and A. F. Lasagni, “Light management in transparent conducting oxides by direct fabrication of periodic surface arrays,” Phys. Proc. 41, 552–557 (2013).
[Crossref]

Sastre, R.

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

Senthil Kumar, A.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
[Crossref]

Shao, J.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Shao, R.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Siebold, M.

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

Soldera, M.

M. Soldera, K. Taretto, J. Berger, and A. F. Lasagni, “Potential of Photocurrent Improvement in μc‐Si: H Solar Cells with TCO Substrates Structured by Direct Laser Interference Patterning,” Adv. Mater. Eng. 18(9), 1674–1682 (2016).
[Crossref]

Stana-Kleinschek, K.

B. Podgornik, B. Zajec, S. Strnad, and K. Stana-Kleinschek, “Influence of surface energy on the interactions between hard coatings and lubricants,” Wear 262(9-10), 1199–1204 (2007).
[Crossref]

Stankevicius, E.

E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]

Strnad, S.

B. Podgornik, B. Zajec, S. Strnad, and K. Stana-Kleinschek, “Influence of surface energy on the interactions between hard coatings and lubricants,” Wear 262(9-10), 1199–1204 (2007).
[Crossref]

Sun, H.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Taretto, K.

M. Soldera, K. Taretto, J. Berger, and A. F. Lasagni, “Potential of Photocurrent Improvement in μc‐Si: H Solar Cells with TCO Substrates Structured by Direct Laser Interference Patterning,” Adv. Mater. Eng. 18(9), 1674–1682 (2016).
[Crossref]

Thiel, M.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D Direct Laser Writing of Nano- and Microstructured Hierarchical Gecko-Mimicking Surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

Thomas, E. L.

M. Maldovan, C. K. Ullal, J. H. Jang, and E. L. Thomas, “Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography,” Adv. Mater. 19(22), 3809–3813 (2007).
[Crossref]

Tian, H.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Troe, J.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys., A Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

Ullal, C. K.

M. Maldovan, C. K. Ullal, J. H. Jang, and E. L. Thomas, “Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography,” Adv. Mater. 19(22), 3809–3813 (2007).
[Crossref]

Voisiat, B.

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-Laser 4-beam-Interference Ablation as a Flexible Tool for Thin Film Microcstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Wang, J.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Wang, W.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Wang, Z. L.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
[Crossref]

Webb, C. E.

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

Wei, Y.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
[Crossref]

Wetzig, A.

A. F. Lasagni, T. Roch, D. Langheinrich, M. Bieda, and A. Wetzig, “Large area direct fabrication of periodic arrays using interference patterning,” Phys. Procedia 12, 214–220 (2011).
[Crossref]

Worgull, M.

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D Direct Laser Writing of Nano- and Microstructured Hierarchical Gecko-Mimicking Surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

Wu, W.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
[Crossref]

Xia, D.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Xie, Q.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
[Crossref]

Xie, S.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Yuan, D.

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21(1), 015010 (2011).
[Crossref]

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
[Crossref]

Zajec, B.

B. Podgornik, B. Zajec, S. Strnad, and K. Stana-Kleinschek, “Influence of surface energy on the interactions between hard coatings and lubricants,” Wear 262(9-10), 1199–1204 (2007).
[Crossref]

Zeman, M.

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Res. Appl. 23, 1649–1659 (2015).

Zhai, H.

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Zhai, T.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Zhang, T.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Zhang, X.

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

Zhang, Y.

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Adv. Eng. Mater. (3)

A. F. Lasagni, A. Manzoni, and F. Mücklich, “Micro/Nano Fabrication of Periodic Hierarchical Structures by Multi-Pulsed Laser Interference Structuring,” Adv. Eng. Mater. 10(9), 872–875 (2007).
[Crossref]

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning,” Adv. Eng. Mater. 9(1-2), 99–103 (2007).
[Crossref]

V. Lang, T. Roch, and A. F. Lasagni, “High‐Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min−1 Fabrication Speed Barrier,” Adv. Eng. Mater. 18(8), 1342–1348 (2016).
[Crossref]

Adv. Funct. Mater. (2)

K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Polymer-templated hydrothermal growth of vertically aligned single-crystal zno nanorods and morphological transformations using structural polarity,” Adv. Funct. Mater. 20(18), 3055–3063 (2010).
[Crossref]

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding, Z. L. Wang, and S. Das, “Heteroepitaxial growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation,” Adv. Funct. Mater. 20(20), 3484–3489 (2010).
[Crossref]

Adv. Mater. (3)

T. Zhai, X. Zhang, Z. Pang, and F. Dou, “Direct writing of polymer lasers using interference ablation,” Adv. Mater. 23(16), 1860–1864 (2011).
[Crossref] [PubMed]

M. Maldovan, C. K. Ullal, J. H. Jang, and E. L. Thomas, “Sub-Micrometer Scale Periodic Porous Cellular Structures: Microframes Prepared by Holographic Interference Lithography,” Adv. Mater. 19(22), 3809–3813 (2007).
[Crossref]

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011).
[Crossref] [PubMed]

Adv. Mater. Eng. (1)

M. Soldera, K. Taretto, J. Berger, and A. F. Lasagni, “Potential of Photocurrent Improvement in μc‐Si: H Solar Cells with TCO Substrates Structured by Direct Laser Interference Patterning,” Adv. Mater. Eng. 18(9), 1674–1682 (2016).
[Crossref]

Appl. Phys. Lett. (1)

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Lukyanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89, 87–90 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys., A Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

Appl. Surf. Sci. (1)

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

Carbon (1)

L. Guo, H. Jiang, R. Shao, Y. Zhang, S. Xie, J. Wang, X. Li, F. Jiang, Q. Chen, T. Zhang, and H. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50(4), 1667–1673 (2012).
[Crossref]

Int. J. Polym. Sci. (1)

M. F. Broglia, D. F. Acevedo, D. Langheinrich, H. R. Perez-Hernandez, C. A. Barbero, and A. F. Lasagni, “Rapid Fabrication of Periodic Patterns on Poly (styrene-co-acrylonitrile) Surfaces Using Direct Laser Interference Patterning,” Int. J. Polym. Sci. 2015, 721035 (2015).
[Crossref]

J. Appl. Phys. (1)

A. Costela, I. García-Moreno, F. Florido, J. M. Figuera, R. Sastre, S. M. Hooker, J. S. Cashmore, and C. E. Webb, “Laser ablation of polymeric materials at 157 nm,” J. Appl. Phys. 77(6), 2343–2350 (1995).
[Crossref]

J. Micromech. Microeng. (1)

R. Guo, D. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” J. Micromech. Microeng. 21(1), 015010 (2011).
[Crossref]

Langmuir (1)

A. Marmur, “The Lotus effect: superhydrophobicity and metastability,” Langmuir 20(9), 3517–3519 (2004).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photonics Rev. 7(3), 385–407 (2013).
[Crossref]

Mat. Res. Expr. (1)

T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, and A. Lasagni, “Laser interference induced nano-crystallized surface swellings of amorphous carbon for advanced micro tribology,” Mat. Res. Expr. 1(3), 035042 (2014).
[Crossref]

Nanotechnology (1)

Y. C. Jung and B. Bhushan, “Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity,” Nanotechnology 17(19), 4970–4980 (2006).
[Crossref]

Nat. Mater. (1)

C. Cottin-Bizonne, J.-L. Barrat, L. Bocquet, and E. Charlaix, “Low-friction flows of liquid at nanopatterned interfaces,” Nat. Mater. 2(4), 238–240 (2003).
[Crossref] [PubMed]

Nouv. Rev. Optique (1)

H. Mishina and T. Asakura, “Two gaussian beam interference,” Nouv. Rev. Optique 5(2), 101–107 (1974).
[Crossref]

Opt. Express (1)

Phys. Proc. (1)

S. Eckhardt, C. Sachse, and A. F. Lasagni, “Light management in transparent conducting oxides by direct fabrication of periodic surface arrays,” Phys. Proc. 41, 552–557 (2013).
[Crossref]

Phys. Procedia (2)

A. F. Lasagni, T. Roch, D. Langheinrich, M. Bieda, and A. Wetzig, “Large area direct fabrication of periodic arrays using interference patterning,” Phys. Procedia 12, 214–220 (2011).
[Crossref]

B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, “Picosecond-Laser 4-beam-Interference Ablation as a Flexible Tool for Thin Film Microcstructuring,” Phys. Procedia 12, 116–124 (2011).
[Crossref]

Planta (1)

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
[Crossref]

Polym. Eng. Sci. (1)

A. F. Lasagni, D. F. Acevedo, C. A. Barbero, and F. Mücklich, “Direct patterning of polystyrene–polymethyl methacrylate copolymer by means of laser interference lithography using UV laser irradiation,” Polym. Eng. Sci. 48(12), 2367–2372 (2008).
[Crossref]

Proc. SPIE (3)

E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, “Holographic lithography for biomedical applications,” Proc. SPIE 8433, 843312 (2012).
[Crossref]

A. F. Lasagni, T. Roch, J. Berger, T. Kunze, V. Lang, and E. Beyer, “To use or not to use (direct laser interference patterning), that is the question,” Proc. SPIE 9351, 935115 (2015).
[Crossref]

A. F. Lasagni, T. Roch, M. Bieda, D. Benke, and E. Beyer, “High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-μm resolution,” Proc. SPIE 8968, 89680A (2014).
[Crossref]

Res. Appl. (1)

A. Ingenito, O. Isabella, and M. Zeman, “Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells,” Res. Appl. 23, 1649–1659 (2015).

Small (2)

M. Röhrig, M. Thiel, M. Worgull, and H. Hölscher, “3D Direct Laser Writing of Nano- and Microstructured Hierarchical Gecko-Mimicking Surfaces,” Small 8(19), 3009–3015 (2012).
[Crossref] [PubMed]

J. Shao, Y. Ding, W. Wang, X. Mei, H. Zhai, H. Tian, X. Li, and B. Liu, “Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling,” Small 10(13), 2595–2601 (2014).
[Crossref] [PubMed]

Soft Matter (1)

K. Koch, B. Bhushan, Y. C. Jung, and W. Barthlott, “Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion,” Soft Matter 5(7), 1386–1393 (2009).
[Crossref]

Tribol. Int. (1)

A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, “The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact,” Tribol. Int. 38(3), 219–225 (2005).
[Crossref]

Wear (2)

B. Podgornik, B. Zajec, S. Strnad, and K. Stana-Kleinschek, “Influence of surface energy on the interactions between hard coatings and lubricants,” Wear 262(9-10), 1199–1204 (2007).
[Crossref]

I. Etsion, G. Halperin, and E. Becker, “Testing piston rings with partial laser surface texturing for friction reduction,” Wear 261, 7–8 (2006).

Other (3)

S. C. Singh, H. Zeng, C. Guo, W. Cai, Nanomaterials: Laser-Induced Nano/Microfabrications (Wiley-VCH Verlag GmbH & Co. KGaA, 2012).

A. F. Lasagni and F. A. Lasagni, Fabrication and Characterization in the Micro-Nano Range (Springer-Verlag, 2011).

D. Bäuerle, Laser Processing and Chemistry (Springer-Verlag, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Two-beams interference patterning principle; (b) calculated intensity distribution obtained by overlapping two Gaussian (TEM00) laser beams with a spatial period of 6 µm; (c) DLIP-µFAB compact system for direct laser interference patterning equipped with an IR-DLIP optical head.

Fig. 2
Fig. 2

Confocal microscope profiles showing periodic line-like structures produced on the transparent Lexan SLX treated with 3 ns single pulses at 263nm laser wavelength; in Fig. 2a the influence of the laser fluence on the pattern morphology is shown, while in 2b the spatial period is varied at constant laser fluence.

Fig. 3
Fig. 3

SEM image of a DLIP-treated transparent Lexan SLX polycarbonate showing the Gaussian non-periodically ablated zone in the center of the DLIP pixel (wavelength: 263 nm, pulse duration: 3 ns, fluence: 3.5 J/cm2, spatial period: 0.56 µm).

Fig. 4
Fig. 4

Confocal microscope profiles showing periodic line-like structures produced on the black Lexan FR25A treated with 6 ns single pulses at 1053nm laser wavelength; in Fig. 3(a) the influence of the laser fluence on the pattern morphology is shown, while in 3b the spatial period is varied at constant laser fluence.

Fig. 5
Fig. 5

Absorption spectra of the transparent PC (Lexan SLX, red line) and the black-doped PC (Lexan FR25A, black line) for wavelengths ranging from 200 to 1500 nm.

Fig. 6
Fig. 6

SEM images of the DLIP-treated black Lexan FR25A using a wavelength of 1053 nm, showing (a) a swelled single-scale line-like ridges (fluence: 0.86 J/cm2, spatial period: 7.13 µm), (b) a swelled double-scale structure (fluence: 1.3 J/cm2, spatial period: 7.13 µm) and (c) a FIB-cross section of a swelled double-scale pixel (fluence: 1.3 J/cm2, spatial period: 7.13 µm).

Fig. 7
Fig. 7

Confocal microscope profiles showing periodic line-like structures produced on the black Lexan FR25A, treated with 3 ns single pulses at 263 nm laser wavelength with 2.13 µm structure period, showing the influence of the laser fluence on the pattern morphology.

Fig. 8
Fig. 8

(a) Ablation curves reporting the periodic (dI ) and non-periodic (dG) contributions for the transparent Lexan SLX treated with 266 nm laser radiation for line-like structuring with a period of 2.13 µm; (b) swelling curves reporting the periodic (dS ) and non-periodic (dGS) contributions for the black Lexan FR25A treated at 1053 nm laser radiation with a 7.31 µm periodic line-like interference pattern.

Fig. 9
Fig. 9

Dependence of the kI, kG and kS coefficients on the spatial period for (a) the transparent Lexan SLX treated at 263 nm, (b) the black Lexan FR25A treated at 1053 nm and (c) the black Lexan FR25A treated at 263 nm laser wavelength. kI, kG, kS and kGS denote the periodic ablation, non-periodic ablation, periodic swelling and non-periodic swelling contributions, respectively.

Fig. 10
Fig. 10

Comparison between (a) experimental and (b) calculated profiles for different structuring conditions: complete periodic-modulated ablation (Lexan SLX, λ = 263 nm, Λ = 2.13 µm, Ep = 2 µJ), predominant Gaussian-modulated ablation mechanism (Lexan SLX, λ = 263 nm, Λ = 0.56 µm, Ep = 0.37 µJ), simultaneous ablation-swelling periodic modulated pattern (Lexan FR25A, λ = 263 nm, Λ = 2.13 µm, Ep = 1.1 µJ), and combined periodic and Gaussian-modulated swelling (Lexan SLX, λ = 1053 nm, Λ = 7.31 µm, Ep = 0.24 mJ). Also a comparison between (c) experimental and (d) calculated double-scale swelled surface is shown, created on Lexan FR25A with λ = 1053 nm, Λ = 7.31 µm, Ep = 0.19 mJ and 100 µm pixel distance.

Tables (1)

Tables Icon

Table 1 Constants a, b, c and d (from Eq. (4) to calculate both ablation ( k I and k G ) and swelling ( k S and k GS ) coefficients

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d( x )= 1 α( λ ) ln( F( x ) F th )
d( x ) = d I ( x ) + d G ( x ) + d S ( x ) + d GS ( x )
d( x )= k I ( Λ )ln( F( x,θ ) F th )+ k G ( Λ )ln( F( x,0 ) F th )+ k S ( Λ )ln( F( x,θ ) F th S )+ k GS ( Λ )ln( F( x,0 ) F th S )
k( Λ )=a+b Λ 1 +cΛ+d Λ 2
F( x,θ )=2Af( x,θ ) e x 2 cos 2 θ σ/2

Metrics