Abstract

Raman spectroscopy is the workhorse for label-free analysis of molecules. It relies on the inelastic scattering of incoming monochromatic light impinging molecules of interest. This effect leads to a very weak emission of light spectrum that provides a signature of the molecules being observed. Considerable efforts have been made over the last decades, in particular with the development of Surface Enhanced Raman Spectroscopy (SERS), to enhance the intensity of the emitted signal so that ultimately, traces of molecules can be detected. Here, we show that dense self-organized networks of quasi-monodisperse nanoparticles redepositing during femtosecond laser ablation of trenches in fused silica can lead to a significant field enhancement effect, enabling the Raman detection of a single-molecule layer deposited on the surface (so called monolayer). Unlike previously reported for SERS experiments, here, there is no metal layer promoting plasmonics effects causing localized field enhancement. The method for producing SERS substrates is therefore quite straightforward and low cost.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering

Kaichen Xu, Chentao Zhang, Rui Zhou, Rong Ji, and Minghui Hong
Opt. Express 24(10) 10352-10358 (2016)

Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach

Vitaliy N. Pustovit and Tigran V. Shahbazyan
J. Opt. Soc. Am. A 23(6) 1369-1374 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridineat a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
    [Crossref]
  3. D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977).
    [Crossref]
  4. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  6. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS--a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
    [Crossref] [PubMed]
  7. M. S. Anderson, “Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres,” Appl. Phys. Lett. 97(13), 131116 (2010).
    [Crossref]
  8. D. Christie, J. Lombardi, and I. Kretzschmar, “Two-Dimensional Array of Silica Particles as a SERS Substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
    [Crossref]
  9. D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136(28), 9886–9889 (2014).
    [Crossref] [PubMed]
  10. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
    [Crossref] [PubMed]
  11. Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling Rules of SERS Intensity,” Adv. Opt. Mater. 2(4), 382–388 (2014).
    [Crossref]
  12. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [Crossref] [PubMed]
  13. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [Crossref] [PubMed]
  14. L. R. Snyder, J. J. Kirkland, and J. L. Glajch, Practical HPLC Method Development (John Wiley & Sons, 2012).
  15. E. Block, J. Thomas, C. Durfee, and J. Squier, “Integrated single grating compressor for variable pulse front tilt in simultaneously spatially and temporally focused systems,” Opt. Lett. 39(24), 6915–6918 (2014).
    [Crossref] [PubMed]
  16. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18(17), 18086–18094 (2010).
    [Crossref] [PubMed]
  17. E. Block, M. Greco, D. Vitek, O. Masihzadeh, D. A. Ammar, M. Y. Kahook, N. Mandava, C. Durfee, and J. Squier, “Simultaneous spatial and temporal focusing for tissue ablation,” Biomed. Opt. Express 4(6), 831–841 (2013).
    [Crossref] [PubMed]
  18. R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
    [Crossref]
  19. C. G. Durfee, M. Greco, E. Block, D. Vitek, and J. A. Squier, “Intuitive analysis of space-time focusing with double-ABCD calculation,” Opt. Express 20(13), 14244–14259 (2012).
    [Crossref] [PubMed]
  20. J. U. Thomas, E. Block, M. Greco, A. Meier, C. G. Durfee, J. A. Squier, S. Nolte, and A. Tünnermann, “Simultaneously spatially and temporally focusing light for tailored ultrafast micro-machining,” Proc. SPIE 8972, 897219 (2014).
    [Crossref]
  21. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18(24), 24673–24678 (2010).
    [Crossref] [PubMed]
  22. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
    [Crossref]
  23. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
    [Crossref] [PubMed]
  24. D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
    [Crossref]
  25. B. W. Kwaadgras, M. W. J. Verdult, M. Dijkstra, and R. Roij, “Can nonadditive dispersion forces explain chain formation of nanoparticles?” J. Chem. Phys. 138(10), 104308 (2013).
    [Crossref] [PubMed]
  26. B. W. Kwaadgras, R. van Roij, and M. Dijkstra, “Self-consistent electric field-induced dipole interaction of colloidal spheres, cubes, rods, and dumbbells,” J. Chem. Phys. 140(15), 154901 (2014).
    [Crossref]
  27. P. Schapotschnikow and T. J. H. Vlugt, “Understanding interactions between capped nanocrystals: Three-body and chain packing effects,” J. Chem. Phys. 131(12), 124705 (2009).
    [Crossref] [PubMed]

2015 (1)

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

2014 (7)

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling Rules of SERS Intensity,” Adv. Opt. Mater. 2(4), 382–388 (2014).
[Crossref]

E. Block, J. Thomas, C. Durfee, and J. Squier, “Integrated single grating compressor for variable pulse front tilt in simultaneously spatially and temporally focused systems,” Opt. Lett. 39(24), 6915–6918 (2014).
[Crossref] [PubMed]

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-Dimensional Array of Silica Particles as a SERS Substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136(28), 9886–9889 (2014).
[Crossref] [PubMed]

J. U. Thomas, E. Block, M. Greco, A. Meier, C. G. Durfee, J. A. Squier, S. Nolte, and A. Tünnermann, “Simultaneously spatially and temporally focusing light for tailored ultrafast micro-machining,” Proc. SPIE 8972, 897219 (2014).
[Crossref]

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
[Crossref]

B. W. Kwaadgras, R. van Roij, and M. Dijkstra, “Self-consistent electric field-induced dipole interaction of colloidal spheres, cubes, rods, and dumbbells,” J. Chem. Phys. 140(15), 154901 (2014).
[Crossref]

2013 (2)

B. W. Kwaadgras, M. W. J. Verdult, M. Dijkstra, and R. Roij, “Can nonadditive dispersion forces explain chain formation of nanoparticles?” J. Chem. Phys. 138(10), 104308 (2013).
[Crossref] [PubMed]

E. Block, M. Greco, D. Vitek, O. Masihzadeh, D. A. Ammar, M. Y. Kahook, N. Mandava, C. Durfee, and J. Squier, “Simultaneous spatial and temporal focusing for tissue ablation,” Biomed. Opt. Express 4(6), 831–841 (2013).
[Crossref] [PubMed]

2012 (2)

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

C. G. Durfee, M. Greco, E. Block, D. Vitek, and J. A. Squier, “Intuitive analysis of space-time focusing with double-ABCD calculation,” Opt. Express 20(13), 14244–14259 (2012).
[Crossref] [PubMed]

2010 (3)

2009 (1)

P. Schapotschnikow and T. J. H. Vlugt, “Understanding interactions between capped nanocrystals: Three-body and chain packing effects,” J. Chem. Phys. 131(12), 124705 (2009).
[Crossref] [PubMed]

2008 (3)

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
[Crossref] [PubMed]

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS--a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

2005 (2)

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1977 (2)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridineat a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Ackermann, R.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
[Crossref]

Adams, D. E.

Albella, P.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridineat a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

Ammar, D. A.

Anderson, M. S.

M. S. Anderson, “Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres,” Appl. Phys. Lett. 97(13), 131116 (2010).
[Crossref]

Ani-Joseph, S.

Backus, S.

Bellouard, Y.

Block, E.

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Caldarola, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Christie, D.

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-Dimensional Array of Silica Particles as a SERS Substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

Cortés, E.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridineat a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dijkstra, M.

B. W. Kwaadgras, R. van Roij, and M. Dijkstra, “Self-consistent electric field-induced dipole interaction of colloidal spheres, cubes, rods, and dumbbells,” J. Chem. Phys. 140(15), 154901 (2014).
[Crossref]

B. W. Kwaadgras, M. W. J. Verdult, M. Dijkstra, and R. Roij, “Can nonadditive dispersion forces explain chain formation of nanoparticles?” J. Chem. Phys. 138(10), 104308 (2013).
[Crossref] [PubMed]

Durfee, C.

Durfee, C. G.

Durst, M.

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Götte, J.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
[Crossref]

Greco, M.

Grinblat, G.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Hashimoto, Y.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling Rules of SERS Intensity,” Adv. Opt. Mater. 2(4), 382–388 (2014).
[Crossref]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Hirao, K.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977).
[Crossref]

Johnson, A.

Juodkazis, S.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling Rules of SERS Intensity,” Adv. Opt. Mater. 2(4), 382–388 (2014).
[Crossref]

Kahook, M. Y.

Kammel, R.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
[Crossref]

Kazansky, P. G.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

Khurgin, J. B.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling Rules of SERS Intensity,” Adv. Opt. Mater. 2(4), 382–388 (2014).
[Crossref]

Kleinfeld, D.

Kneipp, H.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS--a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, J.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS--a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kneipp, K.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS--a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kretzschmar, I.

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-Dimensional Array of Silica Particles as a SERS Substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

Kwaadgras, B. W.

B. W. Kwaadgras, R. van Roij, and M. Dijkstra, “Self-consistent electric field-induced dipole interaction of colloidal spheres, cubes, rods, and dumbbells,” J. Chem. Phys. 140(15), 154901 (2014).
[Crossref]

B. W. Kwaadgras, M. W. J. Verdult, M. Dijkstra, and R. Roij, “Can nonadditive dispersion forces explain chain formation of nanoparticles?” J. Chem. Phys. 138(10), 104308 (2013).
[Crossref] [PubMed]

Lancry, M.

Lombardi, J.

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-Dimensional Array of Silica Particles as a SERS Substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

Lu, L.

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136(28), 9886–9889 (2014).
[Crossref] [PubMed]

Maier, S. A.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Mandava, N.

Masihzadeh, O.

Mcquillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Meier, A.

J. U. Thomas, E. Block, M. Greco, A. Meier, C. G. Durfee, J. A. Squier, S. Nolte, and A. Tünnermann, “Simultaneously spatially and temporally focusing light for tailored ultrafast micro-machining,” Proc. SPIE 8972, 897219 (2014).
[Crossref]

Miura, K.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nishijima, Y.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling Rules of SERS Intensity,” Adv. Opt. Mater. 2(4), 382–388 (2014).
[Crossref]

Nolte, S.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
[Crossref]

J. U. Thomas, E. Block, M. Greco, A. Meier, C. G. Durfee, J. A. Squier, S. Nolte, and A. Tünnermann, “Simultaneously spatially and temporally focusing light for tailored ultrafast micro-machining,” Proc. SPIE 8972, 897219 (2014).
[Crossref]

Oron, D.

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Poulin, J. C.

Poumellec, B.

Qi, D.

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136(28), 9886–9889 (2014).
[Crossref] [PubMed]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Roij, R.

B. W. Kwaadgras, M. W. J. Verdult, M. Dijkstra, and R. Roij, “Can nonadditive dispersion forces explain chain formation of nanoparticles?” J. Chem. Phys. 138(10), 104308 (2013).
[Crossref] [PubMed]

Rosa, L.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling Rules of SERS Intensity,” Adv. Opt. Mater. 2(4), 382–388 (2014).
[Crossref]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Sakakura, M.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

Schapotschnikow, P.

P. Schapotschnikow and T. J. H. Vlugt, “Understanding interactions between capped nanocrystals: Three-body and chain packing effects,” J. Chem. Phys. 131(12), 124705 (2009).
[Crossref] [PubMed]

Shimotsuma, Y.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

Silberberg, Y.

Skupin, S.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
[Crossref]

Squier, J.

Squier, J. A.

Tal, E.

Tan, B.

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

Thomas, J.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
[Crossref]

E. Block, J. Thomas, C. Durfee, and J. Squier, “Integrated single grating compressor for variable pulse front tilt in simultaneously spatially and temporally focused systems,” Opt. Lett. 39(24), 6915–6918 (2014).
[Crossref] [PubMed]

Thomas, J. U.

J. U. Thomas, E. Block, M. Greco, A. Meier, C. G. Durfee, J. A. Squier, S. Nolte, and A. Tünnermann, “Simultaneously spatially and temporally focusing light for tailored ultrafast micro-machining,” Proc. SPIE 8972, 897219 (2014).
[Crossref]

Tsai, P. S.

Tünnermann, A.

J. U. Thomas, E. Block, M. Greco, A. Meier, C. G. Durfee, J. A. Squier, S. Nolte, and A. Tünnermann, “Simultaneously spatially and temporally focusing light for tailored ultrafast micro-machining,” Proc. SPIE 8972, 897219 (2014).
[Crossref]

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
[Crossref]

Van Duyne, R. P.

D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977).
[Crossref]

van Howe, J.

van Roij, R.

B. W. Kwaadgras, R. van Roij, and M. Dijkstra, “Self-consistent electric field-induced dipole interaction of colloidal spheres, cubes, rods, and dumbbells,” J. Chem. Phys. 140(15), 154901 (2014).
[Crossref]

Venkatakrishnan, K.

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

Verdult, M. W. J.

B. W. Kwaadgras, M. W. J. Verdult, M. Dijkstra, and R. Roij, “Can nonadditive dispersion forces explain chain formation of nanoparticles?” J. Chem. Phys. 138(10), 104308 (2013).
[Crossref] [PubMed]

Vipparty, D.

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

Vitek, D.

Vitek, D. N.

Vlugt, T. J. H.

P. Schapotschnikow and T. J. H. Vlugt, “Understanding interactions between capped nanocrystals: Three-body and chain packing effects,” J. Chem. Phys. 131(12), 124705 (2009).
[Crossref] [PubMed]

Wang, L.

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136(28), 9886–9889 (2014).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Xu, C.

Yang, W.

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

Zhang, J.

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136(28), 9886–9889 (2014).
[Crossref] [PubMed]

Zhu, G.

Zipfel, W.

Adv. Opt. Mater. (1)

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling Rules of SERS Intensity,” Adv. Opt. Mater. 2(4), 382–388 (2014).
[Crossref]

Appl. Phys. Lett. (2)

M. S. Anderson, “Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres,” Appl. Phys. Lett. 97(13), 131116 (2010).
[Crossref]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

Biomed. Opt. Express (1)

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Chem. Soc. Rev. (1)

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS--a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridineat a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

D. Qi, L. Lu, L. Wang, and J. Zhang, “Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling,” J. Am. Chem. Soc. 136(28), 9886–9889 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. Vipparty, B. Tan, and K. Venkatakrishnan, “Nanostructures synthesis by femtosecond laser ablation of glasses,” J. Appl. Phys. 112(7), 073109 (2012).
[Crossref]

J. Chem. Phys. (3)

B. W. Kwaadgras, M. W. J. Verdult, M. Dijkstra, and R. Roij, “Can nonadditive dispersion forces explain chain formation of nanoparticles?” J. Chem. Phys. 138(10), 104308 (2013).
[Crossref] [PubMed]

B. W. Kwaadgras, R. van Roij, and M. Dijkstra, “Self-consistent electric field-induced dipole interaction of colloidal spheres, cubes, rods, and dumbbells,” J. Chem. Phys. 140(15), 154901 (2014).
[Crossref]

P. Schapotschnikow and T. J. H. Vlugt, “Understanding interactions between capped nanocrystals: Three-body and chain packing effects,” J. Chem. Phys. 131(12), 124705 (2009).
[Crossref] [PubMed]

J. Electroanal. Chem. Interfacial Electrochem. (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977).
[Crossref]

J. Phys. Chem. C (1)

D. Christie, J. Lombardi, and I. Kretzschmar, “Two-Dimensional Array of Silica Particles as a SERS Substrate,” J. Phys. Chem. C 118(17), 9114–9118 (2014).
[Crossref]

Light Sci. Appl. (1)

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3(5), e169 (2014).
[Crossref]

Nat. Commun. (1)

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Proc. SPIE (1)

J. U. Thomas, E. Block, M. Greco, A. Meier, C. G. Durfee, J. A. Squier, S. Nolte, and A. Tünnermann, “Simultaneously spatially and temporally focusing light for tailored ultrafast micro-machining,” Proc. SPIE 8972, 897219 (2014).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Other (1)

L. R. Snyder, J. J. Kirkland, and J. L. Glajch, Practical HPLC Method Development (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 2
Fig. 2

Raman spectra for a substrate with laser ablated trenches placed in contact with a polyurethane membrane. Starting from the bottom, the curves show the spectra of the substrate measured: 1/ in between lines, 2/ in the middle of the trench, 3/ at a distance of 80 microns from the trench (where nanoparticles are found), respectively. The Raman spectra are normalized using the D1 peak intensity of Silica. The Raman spectrum of the polymer membrane is shown for identification.

Fig. 3
Fig. 3

From bottom to top: Raman spectra taken 1/ at a distance of 30 microns from a trench, 2/ from the reference solution (chloro(dimethyl)octylsilane) used to produce the monolayer and 3/ far from a trench. Peaks attributed to the atmosphere surrounding the specimens are indicated. The two spectra of fused silica were normalized and obtained following rigorously the same measurement procedure. Zones of particular interest are painted in light blue.

Fig. 4
Fig. 4

Raman scan across the surface, illustrating the Raman enhancement and revealing the monolayer is only confined to the nanoparticle layer. The dark dots (left axis) represent the peak intensity of the highest intensity Raman peak of the monolayer. The triangles (right axis) are the peak intensity for the main band of silica.

Fig. 5
Fig. 5

Raman intensity peak taken at 2904 cm−1 (i.e. the most intense peak from the monolayer Raman signal) as a function of the distance from the trench. Measurements were taken every ten microns. The curve shows discontinuity and a few peaks are clearly visible (highlighted with a blue arrow). These peaks are not measurement artefacts and are effectively present. These strong discontinuities suggest the presence of ‘hot spots’.

Fig. 6
Fig. 6

Raman intensity maps revealing the presence of ‘hot spots’ where the field-enhancement is the most prominent. Right and left maps are taken at 50 µm and 400 μm from the trench out of which the nanoparticles were expelled (the size of the maps are identical). Parameters for the Raman measurements are rigorously identical for each point and for both maps.

Fig. 7
Fig. 7

Two Raman spectra taken at distances close (30 µm) and far away (700 µm) from the trench. Although the monolayer is present everywhere, the enhancement effect affects only the signal of the monolayer deposited on the nanoparticles. The two curves are obtained with rigorously the same Raman exposure and signal collection conditions. The blue curve is arbitrary shifted up for clarity. Inset: Magnified view of the two normalized curves around 2904 cm−1, showing this peak barely visible in the region without nanoparticles (dark curve). We use the intensity ratio for this peak measured at 30 and 700 µm as a rough estimate of the enhancement factor, here between 100 and 150.

Metrics