Abstract

Active phase locking of a multicore erbium-doped fiber amplifier is demonstrated for 180 ns narrow-linewidth pulses at 1545 nm. A spatial light modulator is used at the input of the amplifier to control the optical phase of 7 beams injected in the hexagonally-arranged cores, ensuring efficient combining through a SPGD algorithm. At the output, combining is performed using a diffractive optical element. This experiment establishes multicore amplifiers as a promising way to scale the energy of Brillouin-limited pulsed amplifiers for LIDAR applications. We also present a simple lensless technique to measure phase shifts between pairs of adjacent channels that could be implemented in future active coherent combining systems.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
    [Crossref]
  2. W. Shi, E. B. Petersen, Z. Yao, D. T. Nguyen, J. Zong, M. A. Stephen, A. Chavez-Pirson, and N. Peyghambarian, “Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm,” Opt. Lett. 35(14), 2418–2420 (2010).
    [Crossref] [PubMed]
  3. A. Brignon, Coherent Laser Beam Combining (John Wiley & Sons, 2013)
  4. L. Lombard, A. Azarian, K. Cadoret, P. Bourdon, D. Goular, G. Canat, V. Jolivet, Y. Jaouën, and O. Vasseur, “Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime,” Opt. Lett. 36(4), 523–525 (2011).
    [Crossref] [PubMed]
  5. M. Hanna, F. Guichard, Y. Zaouter, D. N. Papadopoulos, F. Druon, and P. Georges, “Coherent combination of ultrafast fiber amplifiers,” J. Phys. At. Mol. Opt. Phys. 49(6), 062004 (2016).
    [Crossref]
  6. L. P. Ramirez, M. Hanna, G. Bouwmans, H. El Hamzaoui, M. Bouazaoui, D. Labat, K. Delplace, J. Pouysegur, F. Guichard, P. Rigaud, V. Kermène, A. Desfarges-Berthelemot, A. Barthélémy, F. Prévost, L. Lombard, Y. Zaouter, F. Druon, and P. Georges, “Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier,” Opt. Express 23(5), 5406–5416 (2015).
    [Crossref] [PubMed]
  7. P. Rigaud, V. Kermene, G. Bouwmans, L. Bigot, A. Desfarges-Berthelemot, D. Labat, A. Le Rouge, T. Mansuryan, and A. Barthélémy, “Spatially dispersive amplification in a 12-core fiber and femtosecond pulse synthesis by coherent spectral combining,” Opt. Express 21(11), 13555–13563 (2013).
    [Crossref] [PubMed]
  8. G. D. Goodno, C.-C. Shih, and J. E. Rothenberg, “Perturbative analysis of coherent combining efficiency with mismatched lasers,” Opt. Express 18(24), 25403–25414 (2010).
    [Crossref] [PubMed]
  9. L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
    [Crossref]
  10. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997).
    [Crossref] [PubMed]
  11. J. Le Dortz, M. Antier, J. Bourderionnet, C. Larat, E. Lallier, and A. Heilmann, ihsan fsaifes, L. Daniault, S. Bellanger, C. Simon-Boisson, J.-C. Chanteloup, and A. Brignon, “Coherent beam combining of 19 fibers in femtosecond regime,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper STu1M.1.
  12. J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
    [Crossref]

2016 (1)

M. Hanna, F. Guichard, Y. Zaouter, D. N. Papadopoulos, F. Druon, and P. Georges, “Coherent combination of ultrafast fiber amplifiers,” J. Phys. At. Mol. Opt. Phys. 49(6), 062004 (2016).
[Crossref]

2015 (2)

L. P. Ramirez, M. Hanna, G. Bouwmans, H. El Hamzaoui, M. Bouazaoui, D. Labat, K. Delplace, J. Pouysegur, F. Guichard, P. Rigaud, V. Kermène, A. Desfarges-Berthelemot, A. Barthélémy, F. Prévost, L. Lombard, Y. Zaouter, F. Druon, and P. Georges, “Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier,” Opt. Express 23(5), 5406–5416 (2015).
[Crossref] [PubMed]

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

2014 (1)

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

2013 (1)

2011 (1)

2010 (2)

2009 (1)

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

1997 (1)

Armstrong, J. M.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

Augere, B.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Azarian, A.

Barthélémy, A.

Bellanger, C.

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

Besson, C.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Bigot, L.

Bouazaoui, M.

Bourdon, P.

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

L. Lombard, A. Azarian, K. Cadoret, P. Bourdon, D. Goular, G. Canat, V. Jolivet, Y. Jaouën, and O. Vasseur, “Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime,” Opt. Lett. 36(4), 523–525 (2011).
[Crossref] [PubMed]

Bouwmans, G.

Bricteux, L.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Brousmiche, S.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Cadoret, K.

Canat, G.

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

L. Lombard, A. Azarian, K. Cadoret, P. Bourdon, D. Goular, G. Canat, V. Jolivet, Y. Jaouën, and O. Vasseur, “Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime,” Opt. Lett. 36(4), 523–525 (2011).
[Crossref] [PubMed]

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Carhart, G. W.

Cariou, J.-P.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Cassaing, F.

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

Chavez-Pirson, A.

Delplace, K.

Desfarges-Berthelemot, A.

Dolfi-Bouteyre, A.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Druon, F.

Durecu, A.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

El Hamzaoui, H.

Fleury, D.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Georges, P.

Goodno, G. D.

Goular, D.

L. Lombard, A. Azarian, K. Cadoret, P. Bourdon, D. Goular, G. Canat, V. Jolivet, Y. Jaouën, and O. Vasseur, “Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime,” Opt. Lett. 36(4), 523–525 (2011).
[Crossref] [PubMed]

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Guichard, F.

Hanna, M.

Jaouën, Y.

Jolivet, V.

Kermene, V.

Kermène, V.

Kinch, M. A.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

Labat, D.

Le Rouge, A.

Lombard, L.

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

L. P. Ramirez, M. Hanna, G. Bouwmans, H. El Hamzaoui, M. Bouazaoui, D. Labat, K. Delplace, J. Pouysegur, F. Guichard, P. Rigaud, V. Kermène, A. Desfarges-Berthelemot, A. Barthélémy, F. Prévost, L. Lombard, Y. Zaouter, F. Druon, and P. Georges, “Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier,” Opt. Express 23(5), 5406–5416 (2015).
[Crossref] [PubMed]

L. Lombard, A. Azarian, K. Cadoret, P. Bourdon, D. Goular, G. Canat, V. Jolivet, Y. Jaouën, and O. Vasseur, “Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime,” Opt. Lett. 36(4), 523–525 (2011).
[Crossref] [PubMed]

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Lugan, S.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Luttmer, J. D.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

Macq, B.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Mansuryan, T.

Michau, V.

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

Mugnier, L.

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

Nguyen, D. T.

Papadopoulos, D. N.

M. Hanna, F. Guichard, Y. Zaouter, D. N. Papadopoulos, F. Druon, and P. Georges, “Coherent combination of ultrafast fiber amplifiers,” J. Phys. At. Mol. Opt. Phys. 49(6), 062004 (2016).
[Crossref]

Petersen, E. B.

Peyghambarian, N.

Pouysegur, J.

Prévost, F.

Primot, J.

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

Ramirez, L. P.

Ricklin, J. C.

Rigaud, P.

Rothenberg, J. E.

Shi, W.

Shih, C.-C.

Skokan, M. R.

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

Stephen, M. A.

Valla, M.

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

Vasseur, O.

Vorontsov, M. A.

Yao, Z.

Zaouter, Y.

Zong, J.

Eur. Phys. J. Spec. Top. (1)

L. Lombard, C. Bellanger, G. Canat, L. Mugnier, F. Cassaing, V. Michau, P. Bourdon, and J. Primot, “Collective synchronization and phase locking of fs fiber amplifiers: Requirements and potential solutions,” Eur. Phys. J. Spec. Top. 224(13), 2557–2566 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dolfi-Bouteyre, G. Canat, M. Valla, B. Augere, C. Besson, D. Goular, L. Lombard, J.-P. Cariou, A. Durecu, D. Fleury, L. Bricteux, S. Brousmiche, S. Lugan, and B. Macq, “Pulsed 1.5-µm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(2), 441–450 (2009).
[Crossref]

J. Phys. At. Mol. Opt. Phys. (1)

M. Hanna, F. Guichard, Y. Zaouter, D. N. Papadopoulos, F. Druon, and P. Georges, “Coherent combination of ultrafast fiber amplifiers,” J. Phys. At. Mol. Opt. Phys. 49(6), 062004 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

J. M. Armstrong, M. R. Skokan, M. A. Kinch, and J. D. Luttmer, “HDVIP five-micron pitch HgCdTe focal plane arrays,” Proc. SPIE 9070, 907033 (2014).
[Crossref]

Other (2)

A. Brignon, Coherent Laser Beam Combining (John Wiley & Sons, 2013)

J. Le Dortz, M. Antier, J. Bourderionnet, C. Larat, E. Lallier, and A. Heilmann, ihsan fsaifes, L. Daniault, S. Bellanger, C. Simon-Boisson, J.-C. Chanteloup, and A. Brignon, “Coherent beam combining of 19 fibers in femtosecond regime,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper STu1M.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Picture of the erbium-doped multicore fiber facet. Red circles correspond to erbium-doped cores and blue circles to boron rods for polarization maintaining. (b) Measured index profile of one core of the MCF.

Fig. 2
Fig. 2

Experimental setup of the multicore fiber amplifier. Beam shaping of input signal and phase modulation is done by the SLM. The DOE both splits the pump and combines the signal. Active phase-locking is ensured by an SPGD feedback loop.

Fig. 3
Fig. 3

Left: sketch of dichroism induced by the DOE between signal and pump wavelengths. Right: signal combining efficiency taking into account intrinsic DOE diffraction efficiency (blue) and pump coupling efficiency (green) as a function of focal length of lens L3 on Fig. 2.

Fig. 4
Fig. 4

Left: phase fluctuations measured over 15 min. Right: Simulated residual phase standard deviation as a function of feedback bandwidth.

Fig. 5
Fig. 5

Left: experimental SPGD metric (corresponding to the power in the DOE zero order) as a function of time. Right: near field beam profile after the DOE in closed loop operation.

Fig. 6
Fig. 6

Theoretical near field and its propagation along the optical axis. In an intermediate field, only adjacent cores interfere in a simple two wave linear fringes pattern. If the phase delay between two cores is changed, the fringe pattern will translate proportionally to the delay. In contrast, the field further away contains interferences between three waves, and the far field (not represented here) is composed of interferences between the seven spots.

Fig. 7
Fig. 7

(a) Schematic representation of fringes shifts between two spots induced by phase fluctuations. (b) Experimental intermediate field, the six areas between the spot number 1 and the peripheral spots correspond to fringes areas used for relative phase shift measurement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E= n=1 N spots exp[ 2iπ (x. x n +y. y n ) λ.f ].exp(i ϕ n )
f= d x /tan( θ p,s ),

Metrics