Abstract

We report a directly blue diode pumped Ti:Sapphire oscillator that generates 5 nJ pulses. This is five times higher pulse energy than previously reported for a directly diode pumped Ti:sapphire laser. With 460 mW of average power at 92 MHz and 82 fs pulses, its peak power reaches 61 kW, also several times higher the value than previously published. Direct diode pumping significantly reduces the complexity and therefore the footprint and the cost of the laser, while SESAM modelocking ensures reliable selfstarting and robust operation. Such a laser is ideally suited for biomedical imaging and nanostructuring applications. As a demonstration of sufficient peak power for microscopy applications, we perform different modalities of nonlinear microscopy of biological samples.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct diode-pumped Kerr Lens 13 fs Ti:sapphire ultrafast oscillator using a single blue laser diode

Sterling Backus, Matt Kirchner, Charles Durfee, Margaret Murnane, and Henry Kapteyn
Opt. Express 25(11) 12469-12477 (2017)

Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power

K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer
Opt. Express 23(23) 30043-30048 (2015)

Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses

André Müller, Ole Bjarlin Jensen, Angelika Unterhuber, Tuan Le, Andreas Stingl, Karl-Heinz Hasler, Bernd Sumpf, Götz Erbert, Peter E. Andersen, and Paul Michael Petersen
Opt. Express 19(13) 12156-12163 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Ell, U. Morgner, F. X. Kãârtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26(6), 373–375 (2001).
    [Crossref] [PubMed]
  2. A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
    [Crossref] [PubMed]
  3. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687–693 (2005).
    [Crossref]
  4. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  5. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
    [Crossref] [PubMed]
  6. B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
    [Crossref]
  7. A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K. H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses,” Opt. Express 19(13), 12156–12163 (2011).
    [Crossref] [PubMed]
  8. G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
    [Crossref]
  9. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
    [Crossref] [PubMed]
  10. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677–13683 (2012).
    [Crossref] [PubMed]
  11. P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
    [Crossref] [PubMed]
  12. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  13. M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
    [Crossref] [PubMed]
  14. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosava, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
    [Crossref]
  15. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
    [Crossref] [PubMed]
  16. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton modelocking with saturable absorbers: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
    [Crossref]
  17. M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
    [Crossref] [PubMed]
  18. B. Resan, R. Aviles-Espinosa, S. Kurmulis, J. Licea-Rodriguez, F. Brunner, A. Rohrbacher, D. Artigas, P. Loza-Alvarez, and K. J. Weingarten, “Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron,” Opt. Express 22(13), 16456–16461 (2014).
    [Crossref] [PubMed]
  19. P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
    [Crossref] [PubMed]
  20. S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
    [Crossref] [PubMed]
  21. M. Lombardo, D. Merino, P. Loza-Alvarez, and G. Lombardo, “Translational label-free nonlinear imaging biomarkers to classify the human corneal microstructure,” Biomed. Opt. Express 6(8), 2803–2818 (2015).
    [Crossref] [PubMed]
  22. O. E. Olarte, J. Licea-Rodriguez, J. A. Palero, E. J. Gualda, D. Artigas, J. Mayer, J. Swoger, J. Sharpe, I. Rocha-Mendoza, R. Rangel-Rojo, and P. Loza-Alvarez, “Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles,” Biomed. Opt. Express 3(7), 1492–1505 (2012).
    [Crossref] [PubMed]
  23. S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS One 8(3), e58600 (2013).
    [Crossref] [PubMed]
  24. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [Crossref] [PubMed]
  25. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref] [PubMed]
  26. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
    [Crossref] [PubMed]
  27. J. Seres, A. Müller, E. Seres, K. O’Keeffe, M. Lenner, R. F. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, “Sub-10-fs, terawatt-scale Ti:sapphire laser system,” Opt. Lett. 28(19), 1832–1834 (2003).
    [Crossref] [PubMed]
  28. M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
    [Crossref]

2015 (2)

2014 (2)

B. Resan, R. Aviles-Espinosa, S. Kurmulis, J. Licea-Rodriguez, F. Brunner, A. Rohrbacher, D. Artigas, P. Loza-Alvarez, and K. J. Weingarten, “Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron,” Opt. Express 22(13), 16456–16461 (2014).
[Crossref] [PubMed]

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosava, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

2013 (2)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS One 8(3), e58600 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (3)

A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K. H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses,” Opt. Express 19(13), 12156–12163 (2011).
[Crossref] [PubMed]

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[Crossref] [PubMed]

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

2010 (1)

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

2009 (4)

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
[Crossref] [PubMed]

2008 (2)

A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33(16), 1905–1907 (2008).
[Crossref] [PubMed]

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

2005 (1)

2003 (2)

2001 (1)

1996 (2)

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton modelocking with saturable absorbers: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1991 (1)

1986 (1)

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Opt. Soc. Am. B 3(1), 125–133 (1986).
[Crossref]

Amat-Roldan, I.

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

Andersen, P. E.

Angelow, G.

Artigas, D.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Aviles-Espinosa, R.

Backus, S.

Bartels, A.

Boiko, A.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Brumer, P.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Brunner, F.

Burns, D.

Butkus, M.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Campagnola, P.

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[Crossref] [PubMed]

Chaitanya Kumar, S.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

Chichkov, B. N.

Chilla, J.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Coadou, E.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Collini, E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Cronauer, C.

Curmi, P. M. G.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Devi, K.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

Diddams, S. A.

Domann, G.

Durfee, C.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Durfee, C. G.

Ebrahim-Zadeh, M.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

Egbert, A.

Ell, R.

Erbert, G.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Fröhlich, L.

Fry, A.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Fujimoto, J. G.

Garlick, J.

Gualda, E. J.

Gürel, K.

Hakobyan, S.

Hamilton, C.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Hasler, K. H.

Heinecke, D.

Heritier, J.-M.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Herzog, R. F.

Hill, S.

Hirosava, K.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosava, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Hoffmann, M.

Hogg, R. A.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Hosaka, A.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosava, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Houbertz, R.

Ippen, E. P.

Jensen, O. B.

Jia, Y.

Jung, I. D.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton modelocking with saturable absorbers: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kãârtner, F. X.

Kannari, F.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosava, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Kaplan, D.

Kapteyn, H.

Kärtner, F. X.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton modelocking with saturable absorbers: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kawauchi, H.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosava, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Kean, P. N.

Keller, U.

B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687–693 (2005).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton modelocking with saturable absorbers: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

Kemp, A. J.

Kirchner, M.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Krausz, F.

Krysa, A. B.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Kurmulis, S.

Le, T.

Lederer, M. J.

Lenner, M.

Licea-Rodriguez, J.

Lombardo, G.

Lombardo, M.

Loza-Alvarez, P.

M. Lombardo, D. Merino, P. Loza-Alvarez, and G. Lombardo, “Translational label-free nonlinear imaging biomarkers to classify the human corneal microstructure,” Biomed. Opt. Express 6(8), 2803–2818 (2015).
[Crossref] [PubMed]

B. Resan, R. Aviles-Espinosa, S. Kurmulis, J. Licea-Rodriguez, F. Brunner, A. Rohrbacher, D. Artigas, P. Loza-Alvarez, and K. J. Weingarten, “Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron,” Opt. Express 22(13), 16456–16461 (2014).
[Crossref] [PubMed]

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS One 8(3), e58600 (2013).
[Crossref] [PubMed]

O. E. Olarte, J. Licea-Rodriguez, J. A. Palero, E. J. Gualda, D. Artigas, J. Mayer, J. Swoger, J. Sharpe, I. Rocha-Mendoza, R. Rangel-Rojo, and P. Loza-Alvarez, “Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles,” Biomed. Opt. Express 3(7), 1492–1505 (2012).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[Crossref] [PubMed]

Luther-Davies, B.

Maclean, A. J.

Maker, G.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Malcolm, G.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Mathew, M.

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS One 8(3), e58600 (2013).
[Crossref] [PubMed]

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[Crossref] [PubMed]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Mayer, J.

Merino, D.

Moffatt, D. J.

Morgner, U.

Moulton, P. F.

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Opt. Soc. Am. B 3(1), 125–133 (1986).
[Crossref]

Müller, A.

Murnane, M.

O’Keeffe, K.

Olarte, O. E.

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS One 8(3), e58600 (2013).
[Crossref] [PubMed]

O. E. Olarte, J. Licea-Rodriguez, J. A. Palero, E. J. Gualda, D. Artigas, J. Mayer, J. Swoger, J. Sharpe, I. Rocha-Mendoza, R. Rangel-Rojo, and P. Loza-Alvarez, “Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles,” Biomed. Opt. Express 3(7), 1492–1505 (2012).
[Crossref] [PubMed]

Ostendorf, A.

Palero, J. A.

Paschotta, R.

Pegoraro, A. F.

Petersen, P. M.

Petersen, S.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Pezacki, J. P.

Popall, M.

Psilodimitrakopoulos, S.

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS One 8(3), e58600 (2013).
[Crossref] [PubMed]

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

Qiu, Y.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Rafailov, E. U.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Rangel-Rojo, R.

Resan, B.

Ridsdale, A.

Robertson, G.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Rocha-Mendoza, I.

Rohrbacher, A.

Roth, P. W.

Samanta, G. K.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

Santos, S. I.

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

Santos, S. I. C. O.

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS One 8(3), e58600 (2013).
[Crossref] [PubMed]

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[Crossref] [PubMed]

Saraceno, C. J.

Sawai, S.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosava, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Schenkel, B.

Scheuer, V.

Schilt, S.

Scholes, G. D.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Schulz, J.

Serbin, J.

Seres, E.

Seres, J.

Sharpe, J.

Shea, K.

Sibbett, W.

Spence, D. E.

Spielmann, C.

Squier, J.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Squier, J. A.

Stevens, B. J.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Stingl, A.

Stolow, A.

Storz, T.

Südmeyer, T.

Sumpf, B.

Swoger, J.

Taft, G.

Thayil, A. K. N.

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

Thomas, A.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Tschudi, T.

Tulloch, W.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Unterhuber, A.

Viselga, R.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Walther, P.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Walther, T.

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

Weingarten, K.

Weingarten, K. J.

B. Resan, R. Aviles-Espinosa, S. Kurmulis, J. Licea-Rodriguez, F. Brunner, A. Rohrbacher, D. Artigas, P. Loza-Alvarez, and K. J. Weingarten, “Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron,” Opt. Express 22(13), 16456–16461 (2014).
[Crossref] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wilk, K. E.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Wittwer, V. J.

Wong, C. Y.

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Young, M. D.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Zalvidea, D.

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[Crossref] [PubMed]

Anal. Chem. (1)

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011).
[Crossref] [PubMed]

Appl. Phys. Express (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosava, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Biomed. Opt. Express (2)

IEEE J. Sel. Top. Quantum Electron. (2)

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton modelocking with saturable absorbers: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Butkus, G. Robertson, G. Maker, G. Malcolm, C. Hamilton, A. B. Krysa, B. J. Stevens, R. A. Hogg, Y. Qiu, T. Walther, and E. U. Rafailov, “High repetition rate Ti:Sapphire laser mode-locked by InP quantum-dot saturable absorber,” IEEE Photonics Technol. Lett. 23(21), 1603–1605 (2011).
[Crossref]

J. Biomed. Opt. (1)

S. Psilodimitrakopoulos, S. I. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009).
[Crossref] [PubMed]

J. Microsc. (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nature (1)

E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature 463(7281), 644–647 (2010).
[Crossref] [PubMed]

Opt. Express (6)

A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K. H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses,” Opt. Express 19(13), 12156–12163 (2011).
[Crossref] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[Crossref] [PubMed]

C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677–13683 (2012).
[Crossref] [PubMed]

P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
[Crossref] [PubMed]

B. Resan, R. Aviles-Espinosa, S. Kurmulis, J. Licea-Rodriguez, F. Brunner, A. Rohrbacher, D. Artigas, P. Loza-Alvarez, and K. J. Weingarten, “Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron,” Opt. Express 22(13), 16456–16461 (2014).
[Crossref] [PubMed]

K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

Opt. Lett. (6)

Opt. Soc. Am. B (1)

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Opt. Soc. Am. B 3(1), 125–133 (1986).
[Crossref]

PLoS One (1)

S. I. C. O. Santos, M. Mathew, O. E. Olarte, S. Psilodimitrakopoulos, and P. Loza-Alvarez, “Femtosecond laser axotomy in caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques,” PLoS One 8(3), e58600 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[Crossref]

Rev. Sci. Instrum. (1)

M. Mathew, S. I. C. O. Santos, D. Zalvidea, and P. Loza-Alvarez, “Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope,” Rev. Sci. Instrum. 80(7), 073701 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup (GDD: group delay dispersion mirror, OC: output coupler).

Fig. 2
Fig. 2

Measured autocorrelation traces (solid lines) with sech2 fit curve (dashed lines) for Configuration 1 (a) and 2 (c); and optical spectra for Configuration 1 (b) and 2 (d).

Fig. 3
Fig. 3

RF power spectra of Configuration 1 recorded with (a) 500 kHz frequency span and 1 kHz frequency resolution, (b) 200 MHz frequency span and 100 kHz frequency resolution.

Fig. 4
Fig. 4

(a) Output beam profile and (b) x and y beam diameter measurements through focus with fit curves, M2x = 1.08 and M2y = 1.12.

Fig. 5
Fig. 5

Three color TPEF imaging of: (a) a section of mouse intestine stained with Alexa Fluor350 bound to the goblet cells (Blue), SYTOX Green in the nuclei DNA (Green), and Alexa Fluor 568 in the filamentous actin (Red); and, (b) Fixed BPAE cells stained with three probes, bound to DNA (DAPI, blue), actin filaments (BODIPY-FL phallacidin, green), and, mitochondria (MitoTracker Red CMXRos, red). Images are maximum projection intensities of z-stacks over a selected region. Scale bar: 20μm.

Fig. 6
Fig. 6

3D SHG microscopy images of collagen type-I from a commercial tendon sample. 3D orthogonal views of the data: center panel: x-y view, upper panel: x-z view and right panel: y-z view. Scale bar: 100μm .

Tables (1)

Tables Icon

Table 1 Laser performance parameters of Configuration 1 and 2.

Metrics