Abstract

A Bull’s eye-plasmonic chip composed of concentric circles was applied to enhanced fluorescence microscopy. Among one dimensional (1-D), 2-D, and Bull’s eye periodic structures, the Bull’s eye-plasmonic chip provided the most enhanced fluorescence intensity under the epi-fluorescence microscope, because incident light through the objective lens with all azimuthal angles can be effectively applied to the surface plasmon resonance- field (excitation field) and the plasmon-enhanced emission was also effectively collected. In the fluorescence observation of a single nanoparticle, the enhanced fluorescence images for a microsphere with ϕ 2 μm and a nanosphere with ϕ 200 nm were observed. For the nanospheres with ϕ 40 and 20 nm, the fluorescence image, which was undetectable on a glass slide, was observed in a spatial resolution of roughly diffraction limit on the Bull’s eye-plasmonic chip. Furthermore, the use of an appropriate pinhole at the aperture stop in the incident optical system improved the fluorescence enhancement. The applicability of a Bull’s eye-plasmonic chip to fluorescence imaging was demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance

Keiko Tawa, Hironobu Hori, Kenji Kintaka, Kazuyuki Kiyosue, Yoshiro Tatsu, and Junji Nishii
Opt. Express 16(13) 9781-9790 (2008)

Mechanisms for extraordinary optical transmission through bull’s eye structures

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, Sergio G. Rodrigo, C. Genet, and T. W. Ebbesen
Opt. Express 19(11) 10429-10442 (2011)

Optical antenna design for fluorescence enhancement in the ultraviolet

Xiaojin Jiao and Steve Blair
Opt. Express 20(28) 29909-29922 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
    [Crossref] [PubMed]
  2. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref] [PubMed]
  3. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
    [Crossref] [PubMed]
  4. B. Masters, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” Opt. Express 3(9), 332–338 (1998).
    [Crossref] [PubMed]
  5. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
    [Crossref] [PubMed]
  6. K. Tawa, M. Umetsu, H. Nakazawa, T. Hattori, and I. Kumagai, “Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor,” ACS Appl. Mater. Interfaces 5(17), 8628–8632 (2013).
    [Crossref] [PubMed]
  7. M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa, “Sensitive detection of interleukin-6 (IL-6) on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53(6S), 06JL05 (2014).
    [Crossref]
  8. X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructrues: From 1D grating to 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
    [Crossref]
  9. K. Tawa, C. Yasui, C. Hosokawa, H. Aota, and J. Nishii, “In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy,” ACS Appl. Mater. Interfaces 6(22), 20010–20015 (2014).
    [Crossref] [PubMed]
  10. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag, (1988).
  11. W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49(1), 569–638 (1998).
    [Crossref] [PubMed]
  12. R. Matsuura, K. Tawa, Y. Kitayama, and T. Takeuchi, “A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein,” Chem. Commun. (Camb.) 52(20), 3883–3886 (2016).
    [Crossref] [PubMed]
  13. K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.
  14. K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
    [Crossref] [PubMed]
  15. K. Tawa, S. Yamamura, C. Sasakawa, I. Shibata, and M. Kataoka, “Sensitive detection of cell surface membrane proteins in living breast cancer cells by using multicolor fluorescence microscopy with a plasmonic chip,” ACS Appl. Mater. Interfaces 8(44), 29893–29898 (2016).
    [Crossref] [PubMed]
  16. J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
    [Crossref] [PubMed]
  17. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
    [Crossref] [PubMed]
  18. A. Mohtashami, C. I. Osorio, and A. F. Koenderink, “Angle-resolved polarimetry measurements of antenna-mediated fluorescence,” Phys. Rev. Appl. 4(5), 054014 (2015).
    [Crossref]
  19. H. E. Arabi, H.-E. Joe, T. Nazari, B.-K. Min, and K. Oh, “A high throughput supra-wavelength plasmonic bull’s eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet,” Opt. Express 21(23), 28083–28094 (2013).
    [Crossref] [PubMed]
  20. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
    [Crossref] [PubMed]
  21. J. Wenger, H. Aouani, D. Gérard, S. Blair, T. W. Ebbesen, and H. Rigneault, “Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications,” Proc. SPIE 7577, 75770J (2010).
    [Crossref]

2016 (2)

R. Matsuura, K. Tawa, Y. Kitayama, and T. Takeuchi, “A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein,” Chem. Commun. (Camb.) 52(20), 3883–3886 (2016).
[Crossref] [PubMed]

K. Tawa, S. Yamamura, C. Sasakawa, I. Shibata, and M. Kataoka, “Sensitive detection of cell surface membrane proteins in living breast cancer cells by using multicolor fluorescence microscopy with a plasmonic chip,” ACS Appl. Mater. Interfaces 8(44), 29893–29898 (2016).
[Crossref] [PubMed]

2015 (2)

K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
[Crossref] [PubMed]

A. Mohtashami, C. I. Osorio, and A. F. Koenderink, “Angle-resolved polarimetry measurements of antenna-mediated fluorescence,” Phys. Rev. Appl. 4(5), 054014 (2015).
[Crossref]

2014 (3)

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa, “Sensitive detection of interleukin-6 (IL-6) on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53(6S), 06JL05 (2014).
[Crossref]

K. Tawa, C. Yasui, C. Hosokawa, H. Aota, and J. Nishii, “In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy,” ACS Appl. Mater. Interfaces 6(22), 20010–20015 (2014).
[Crossref] [PubMed]

2013 (2)

H. E. Arabi, H.-E. Joe, T. Nazari, B.-K. Min, and K. Oh, “A high throughput supra-wavelength plasmonic bull’s eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet,” Opt. Express 21(23), 28083–28094 (2013).
[Crossref] [PubMed]

K. Tawa, M. Umetsu, H. Nakazawa, T. Hattori, and I. Kumagai, “Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor,” ACS Appl. Mater. Interfaces 5(17), 8628–8632 (2013).
[Crossref] [PubMed]

2011 (2)

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

2010 (2)

J. Wenger, H. Aouani, D. Gérard, S. Blair, T. W. Ebbesen, and H. Rigneault, “Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications,” Proc. SPIE 7577, 75770J (2010).
[Crossref]

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructrues: From 1D grating to 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

2008 (1)

2006 (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

2005 (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

2000 (1)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[Crossref] [PubMed]

1998 (2)

B. Masters, “Three-dimensional microscopic tomographic imagings of the cataract in a human lens in vivo,” Opt. Express 3(9), 332–338 (1998).
[Crossref] [PubMed]

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49(1), 569–638 (1998).
[Crossref] [PubMed]

Aota, H.

K. Tawa, C. Yasui, C. Hosokawa, H. Aota, and J. Nishii, “In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy,” ACS Appl. Mater. Interfaces 6(22), 20010–20015 (2014).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

J. Wenger, H. Aouani, D. Gérard, S. Blair, T. W. Ebbesen, and H. Rigneault, “Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications,” Proc. SPIE 7577, 75770J (2010).
[Crossref]

Arabi, H. E.

Blair, S.

J. Wenger, H. Aouani, D. Gérard, S. Blair, T. W. Ebbesen, and H. Rigneault, “Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications,” Proc. SPIE 7577, 75770J (2010).
[Crossref]

Bonod, N.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Cheng, J.-X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Cuche, A.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

Cui, X. Q.

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructrues: From 1D grating to 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Devaux, E.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Ebbesen, T. W.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

J. Wenger, H. Aouani, D. Gérard, S. Blair, T. W. Ebbesen, and H. Rigneault, “Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications,” Proc. SPIE 7577, 75770J (2010).
[Crossref]

Genet, C.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

Gérard, D.

J. Wenger, H. Aouani, D. Gérard, S. Blair, T. W. Ebbesen, and H. Rigneault, “Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications,” Proc. SPIE 7577, 75770J (2010).
[Crossref]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Hattori, T.

K. Tawa, M. Umetsu, H. Nakazawa, T. Hattori, and I. Kumagai, “Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor,” ACS Appl. Mater. Interfaces 5(17), 8628–8632 (2013).
[Crossref] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Hori, H.

Hosokawa, C.

K. Tawa, C. Yasui, C. Hosokawa, H. Aota, and J. Nishii, “In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy,” ACS Appl. Mater. Interfaces 6(22), 20010–20015 (2014).
[Crossref] [PubMed]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Joe, H.-E.

Kataoka, M.

K. Tawa, S. Yamamura, C. Sasakawa, I. Shibata, and M. Kataoka, “Sensitive detection of cell surface membrane proteins in living breast cancer cells by using multicolor fluorescence microscopy with a plasmonic chip,” ACS Appl. Mater. Interfaces 8(44), 29893–29898 (2016).
[Crossref] [PubMed]

Kaya, T.

K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
[Crossref] [PubMed]

Kintaka, K.

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructrues: From 1D grating to 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[Crossref] [PubMed]

Kitayama, Y.

R. Matsuura, K. Tawa, Y. Kitayama, and T. Takeuchi, “A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein,” Chem. Commun. (Camb.) 52(20), 3883–3886 (2016).
[Crossref] [PubMed]

Kiyosue, K.

Knoll, W.

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49(1), 569–638 (1998).
[Crossref] [PubMed]

Koenderink, A. F.

A. Mohtashami, C. I. Osorio, and A. F. Koenderink, “Angle-resolved polarimetry measurements of antenna-mediated fluorescence,” Phys. Rev. Appl. 4(5), 054014 (2015).
[Crossref]

Kondo, F.

K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
[Crossref] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Kumagai, I.

K. Tawa, M. Umetsu, H. Nakazawa, T. Hattori, and I. Kumagai, “Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor,” ACS Appl. Mater. Interfaces 5(17), 8628–8632 (2013).
[Crossref] [PubMed]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Mahboub, O.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Masters, B.

Matsuura, R.

R. Matsuura, K. Tawa, Y. Kitayama, and T. Takeuchi, “A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein,” Chem. Commun. (Camb.) 52(20), 3883–3886 (2016).
[Crossref] [PubMed]

Min, B.-K.

Miyaki, T.

K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.

Mock, J. J.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[Crossref] [PubMed]

Mohtashami, A.

A. Mohtashami, C. I. Osorio, and A. F. Koenderink, “Angle-resolved polarimetry measurements of antenna-mediated fluorescence,” Phys. Rev. Appl. 4(5), 054014 (2015).
[Crossref]

Nagae, K.

K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
[Crossref] [PubMed]

Nakamura, Y.

K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
[Crossref] [PubMed]

Nakazawa, H.

K. Tawa, M. Umetsu, H. Nakazawa, T. Hattori, and I. Kumagai, “Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor,” ACS Appl. Mater. Interfaces 5(17), 8628–8632 (2013).
[Crossref] [PubMed]

K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.

Naruishi, N.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa, “Sensitive detection of interleukin-6 (IL-6) on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53(6S), 06JL05 (2014).
[Crossref]

Nazari, T.

Nishii, J.

K. Tawa, C. Yasui, C. Hosokawa, H. Aota, and J. Nishii, “In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy,” ACS Appl. Mater. Interfaces 6(22), 20010–20015 (2014).
[Crossref] [PubMed]

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructrues: From 1D grating to 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[Crossref] [PubMed]

Nozaki, A.

K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
[Crossref] [PubMed]

Oh, K.

Osorio, C. I.

A. Mohtashami, C. I. Osorio, and A. F. Koenderink, “Angle-resolved polarimetry measurements of antenna-mediated fluorescence,” Phys. Rev. Appl. 4(5), 054014 (2015).
[Crossref]

Popov, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Rigneault, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

J. Wenger, H. Aouani, D. Gérard, S. Blair, T. W. Ebbesen, and H. Rigneault, “Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications,” Proc. SPIE 7577, 75770J (2010).
[Crossref]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Sasakawa, C.

K. Tawa, S. Yamamura, C. Sasakawa, I. Shibata, and M. Kataoka, “Sensitive detection of cell surface membrane proteins in living breast cancer cells by using multicolor fluorescence microscopy with a plasmonic chip,” ACS Appl. Mater. Interfaces 8(44), 29893–29898 (2016).
[Crossref] [PubMed]

K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
[Crossref] [PubMed]

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa, “Sensitive detection of interleukin-6 (IL-6) on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53(6S), 06JL05 (2014).
[Crossref]

K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.

Schultz, D. A.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[Crossref] [PubMed]

Schultz, S.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[Crossref] [PubMed]

Shibata, I.

K. Tawa, S. Yamamura, C. Sasakawa, I. Shibata, and M. Kataoka, “Sensitive detection of cell surface membrane proteins in living breast cancer cells by using multicolor fluorescence microscopy with a plasmonic chip,” ACS Appl. Mater. Interfaces 8(44), 29893–29898 (2016).
[Crossref] [PubMed]

Smith, D. R.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[Crossref] [PubMed]

Sujino, T.

K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.

Sumiya, M.

K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.

Takeuchi, T.

R. Matsuura, K. Tawa, Y. Kitayama, and T. Takeuchi, “A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein,” Chem. Commun. (Camb.) 52(20), 3883–3886 (2016).
[Crossref] [PubMed]

Tanaka, Y.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa, “Sensitive detection of interleukin-6 (IL-6) on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53(6S), 06JL05 (2014).
[Crossref]

Tatsu, Y.

Tawa, K.

R. Matsuura, K. Tawa, Y. Kitayama, and T. Takeuchi, “A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein,” Chem. Commun. (Camb.) 52(20), 3883–3886 (2016).
[Crossref] [PubMed]

K. Tawa, S. Yamamura, C. Sasakawa, I. Shibata, and M. Kataoka, “Sensitive detection of cell surface membrane proteins in living breast cancer cells by using multicolor fluorescence microscopy with a plasmonic chip,” ACS Appl. Mater. Interfaces 8(44), 29893–29898 (2016).
[Crossref] [PubMed]

K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
[Crossref] [PubMed]

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa, “Sensitive detection of interleukin-6 (IL-6) on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53(6S), 06JL05 (2014).
[Crossref]

K. Tawa, C. Yasui, C. Hosokawa, H. Aota, and J. Nishii, “In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy,” ACS Appl. Mater. Interfaces 6(22), 20010–20015 (2014).
[Crossref] [PubMed]

K. Tawa, M. Umetsu, H. Nakazawa, T. Hattori, and I. Kumagai, “Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor,” ACS Appl. Mater. Interfaces 5(17), 8628–8632 (2013).
[Crossref] [PubMed]

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructrues: From 1D grating to 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[Crossref] [PubMed]

K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.

Toma, M.

K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.

Tsuneyasu, M.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa, “Sensitive detection of interleukin-6 (IL-6) on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53(6S), 06JL05 (2014).
[Crossref]

Umetsu, M.

K. Tawa, M. Umetsu, H. Nakazawa, T. Hattori, and I. Kumagai, “Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor,” ACS Appl. Mater. Interfaces 5(17), 8628–8632 (2013).
[Crossref] [PubMed]

K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Wenger, J.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

J. Wenger, H. Aouani, D. Gérard, S. Blair, T. W. Ebbesen, and H. Rigneault, “Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications,” Proc. SPIE 7577, 75770J (2010).
[Crossref]

Yamamura, S.

K. Tawa, S. Yamamura, C. Sasakawa, I. Shibata, and M. Kataoka, “Sensitive detection of cell surface membrane proteins in living breast cancer cells by using multicolor fluorescence microscopy with a plasmonic chip,” ACS Appl. Mater. Interfaces 8(44), 29893–29898 (2016).
[Crossref] [PubMed]

Yasui, C.

K. Tawa, C. Yasui, C. Hosokawa, H. Aota, and J. Nishii, “In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy,” ACS Appl. Mater. Interfaces 6(22), 20010–20015 (2014).
[Crossref] [PubMed]

Yi, J.-M.

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

Yoshida, Y.

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa, “Sensitive detection of interleukin-6 (IL-6) on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53(6S), 06JL05 (2014).
[Crossref]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (3)

K. Tawa, M. Umetsu, H. Nakazawa, T. Hattori, and I. Kumagai, “Application of 300× enhanced fluorescence on a plasmonic chip modified with a bispecific antibody to a sensitive immunosensor,” ACS Appl. Mater. Interfaces 5(17), 8628–8632 (2013).
[Crossref] [PubMed]

K. Tawa, C. Yasui, C. Hosokawa, H. Aota, and J. Nishii, “In situ sensitive fluorescence imaging of neurons cultured on a plasmonic dish using fluorescence microscopy,” ACS Appl. Mater. Interfaces 6(22), 20010–20015 (2014).
[Crossref] [PubMed]

K. Tawa, S. Yamamura, C. Sasakawa, I. Shibata, and M. Kataoka, “Sensitive detection of cell surface membrane proteins in living breast cancer cells by using multicolor fluorescence microscopy with a plasmonic chip,” ACS Appl. Mater. Interfaces 8(44), 29893–29898 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

J.-M. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS Photonics 1(4), 365–370 (2014).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Q. Cui, K. Tawa, K. Kintaka, and J. Nishii, “Enhanced fluorescence microscopic imaging by plasmonic nanostructrues: From 1D grating to 2D nanohole array,” Adv. Funct. Mater. 20(6), 945–950 (2010).
[Crossref]

Anal. Chem. (1)

K. Tawa, F. Kondo, C. Sasakawa, K. Nagae, Y. Nakamura, A. Nozaki, and T. Kaya, “Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip,” Anal. Chem. 87(7), 3871–3876 (2015).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49(1), 569–638 (1998).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

R. Matsuura, K. Tawa, Y. Kitayama, and T. Takeuchi, “A plasmonic chip-based bio/chemical hybrid sensing system for the highly sensitive detection of C-reactive protein,” Chem. Commun. (Camb.) 52(20), 3883–3886 (2016).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

M. Tsuneyasu, C. Sasakawa, N. Naruishi, Y. Tanaka, Y. Yoshida, and K. Tawa, “Sensitive detection of interleukin-6 (IL-6) on a plasmonic chip by grating-coupled surface-plasmon-field-enhanced fluorescence imaging,” Jpn. J. Appl. Phys. 53(6S), 06JL05 (2014).
[Crossref]

Nano Lett. (2)

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic antennas for directional sorting of fluorescence emission,” Nano Lett. 11(6), 2400–2406 (2011).
[Crossref] [PubMed]

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. Appl. (1)

A. Mohtashami, C. I. Osorio, and A. F. Koenderink, “Angle-resolved polarimetry measurements of antenna-mediated fluorescence,” Phys. Rev. Appl. 4(5), 054014 (2015).
[Crossref]

Phys. Rev. Lett. (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Wenger, H. Aouani, D. Gérard, S. Blair, T. W. Ebbesen, and H. Rigneault, “Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications,” Proc. SPIE 7577, 75770J (2010).
[Crossref]

Other (2)

K. Tawa, M. Sumiya, M. Toma, C. Sasakawa, T. Sujino, T. Miyaki, H. Nakazawa, and M. Umetsu, “Interleukin-6 detection with a plasmonic chip,” J. Mol. Eng. Mater.in press.

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag, (1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of wavenumber vectors which satisfy the resonance conditions in the grating-coupled SPR for the azimuth angle of (a) 0 and (b) ψ: (Upper) sum of wavenumber vectors shown in xy-plane and (bottom) incident plane and k g shown in 3-D. A red solid arrow, a void arrow, and a broken arrow correspond to the |kph|sinθ, kg, and kspp vectors, respectively.

Fig. 2
Fig. 2

AFM images of Bull’s eye: a top view and a cross section for (a) 400, (b) 480, and (c) 600 nm pitch.

Fig. 3
Fig. 3

Schematic of Bull’s Eye pattern: Pitch sizes were 400, 480, and 600 nm for 5 circles (green) in the left side, 7 circles (orange) in a middle line, and 5 circles (red) in the right side, respectively.

Fig. 4
Fig. 4

Fluorescence images on the glass slide (a) and plasmonic chip of 1-D (b), 2-D (c), and Bull’s eye (d). Bar correspond to 200 μm.

Fig. 5
Fig. 5

Fluorescence images of (a) Dred-20 with Cy5 filter unit and (b) Red-20 with Cy3 filter unit. Bars correspond to 100 μm.

Fig. 6
Fig. 6

Fluorescence images of Crimson and Dred nanospheres on the glass slides: Diameters of naospheres were (a) 1000 nm, (b) 200 nm, (c) 40 nm, and (d) 20 nm. Bars correspond to 2 μm.

Fig. 7
Fig. 7

Fluorescence images of Crimson and Dred nanospheres on the plasmonic chip: Diameters of nanospheres were (a) 1000 nm, (b) 200 nm, (c) 40 nm, and (d) 20 nm. Bars correspond to 2 μm.

Fig. 8
Fig. 8

Reflection image for Bull’s eye-plasmonic chip filled with water (a) without pinhole, (b)with ϕ1 mm-pinhole at aperture stop, (c) with ϕ 0.5-1.5 mm donut-type pinhole, and (d) with ϕ 1.5-2.5 mm-pinhole. Bars correspond to 15 μm.

Fig. 9
Fig. 9

Single ϕ 200 nm particle was observed at the same condition as pinholes described in Fig. 8. Bars correspond to 2 μm.

Tables (3)

Tables Icon

Table 1 Samples of fluorescent nanospheres.

Tables Icon

Table 2 Fluorescence enhancement factor of nanospheres on the plasmonic chip.

Tables Icon

Table 3 Fluorescence intensities and diameters determined from the fluorescence images of nanospheres.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

kspp = kph +m kg ,
| kspp |= |kph |sinθ+m| kg |,
[couplingefficiency]=1( Rgrating Rflat ),

Metrics