Abstract

We designed and demonstrated a tri-layer Si3N4/SiO2 photonic integrated circuit capable of vertical interlayer coupling with arbitrary splitting ratios. Based on this multilayer photonic integrated circuit platform with each layer thicknesses of 150 nm, 50 nm, and 150 nm, we designed and simulated the vertical Y-junctions and 3D couplers with arbitrary power splitting ratios between 1:10 and 10:1 and with negligible(< −50 dB) reflection. Based on the design, we fabricated and demonstrated tri-layer vertical Y-junctions with the splitting ratios of 1:1 and 3:2 with excess optical losses of 0.230 dB. Further, we fabricated and demonstrated the 1 × 3 3D couplers with the splitting ratio of 1:1:4 for symmetric structures and variable splitting ratio for asymmetric structures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits

Kuanping Shang, Shibnath Pathak, Binbin Guan, Guangyao Liu, and S. J. B. Yoo
Opt. Express 23(16) 21334-21342 (2015)

Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio

Zhongjin Lin and Wei Shi
Opt. Express 27(10) 14338-14343 (2019)

Vertically-integrated multimode interferometer coupler for 3D photonic circuits in SOI

Chris J. Brooks, Andrew P. Knights, and Paul E. Jessop
Opt. Express 19(4) 2916-2921 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
    [Crossref]
  2. K. Shang, S. Pathak, B. Guan, G. Liu, C. Qin, R. P. Scott, and S. J. B. Yoo, “Si3N4 multilayer platform for photonic integrated circuits,” in The Conference on Lasers and Electro-Optics (2015), paper STu2F.6.
  3. T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
    [Crossref]
  4. J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
    [Crossref]
  5. M. Sodagar, R. Pourabolghasem, A. A. Eftekhar, and A. Adibi, “High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities,” Opt. Express 22(14), 16767–16777 (2014).
    [Crossref] [PubMed]
  6. X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008).
    [Crossref] [PubMed]
  7. R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008).
    [Crossref] [PubMed]
  8. A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23(23), 30297–30307 (2015).
    [Crossref] [PubMed]
  9. W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33(4), 901–910 (2015).
    [Crossref]
  10. K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3D photonic integrated circuits,” in Optical Fiber Communication Conference (2015), paper Th1F.6.
    [Crossref]
  11. K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23(16), 21334–21342 (2015).
    [Crossref] [PubMed]
  12. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  13. S. Pathak, K. Shang, and S. J. B. Yoo, “Experimental demonstration of compact 16 channels-50 GHz Si3N4 arrayed waveguide grating,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu3A.3.
    [Crossref]
  14. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
    [Crossref] [PubMed]
  15. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [Crossref] [PubMed]
  16. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, “Ultralow-loss 3-dB photonic crystal waveguide splitter,” Opt. Lett. 29(14), 1623–1625 (2004).
    [Crossref] [PubMed]
  17. P.-A. Belanger, “Beam quality factor of the LP01 mode of the step-index fiber,” Optics 32, 2107–2109 (1993).
  18. K. Shang, S. Pathak, B. Guan, G. Liu, S. Feng, and S. J. B. Yoo, “Tri-layer, Vertical Y-junction, Si3N4/SiO2 3D Photonic Integrated Circuits with Arbitrary Splitting Ratio,” in Optical Fiber Communication Conference, (2016), paper Tu3E.3.
    [Crossref]
  19. M. Zhang, R. Malureanu, A. C. Krüger, and M. Kristensen, “1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides,” Opt. Express 18(14), 14944–14949 (2010).
    [Crossref] [PubMed]

2015 (3)

2014 (2)

2013 (1)

2012 (2)

N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
[Crossref] [PubMed]

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

2011 (1)

2010 (1)

2008 (2)

2004 (1)

1993 (1)

P.-A. Belanger, “Beam quality factor of the LP01 mode of the step-index fiber,” Optics 32, 2107–2109 (1993).

1991 (1)

T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
[Crossref]

Adibi, A.

Akimoto, R.

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

Asghari, M.

Atabaki, A. H.

Baehr-Jones, T.

Baets, R.

Barton, J. S.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Bauters, J. F.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Beals, M.

Beckx, S.

Belanger, P.-A.

P.-A. Belanger, “Beam quality factor of the LP01 mode of the step-index fiber,” Optics 32, 2107–2109 (1993).

Blumenthal, D. J.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Bogaerts, W.

Borel, P. I.

Bowers, J. E.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Bruinink, C. M.

Cheng, J.

Cohen, D.

Cunningham, J. E.

Dumon, P.

Eftekhar, A. A.

Feng, D.

Feng, J.

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

Frandsen, L. H.

Galland, C.

Guan, B.

Harpøth, A.

Heck, M. J. R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Heideman, R. G.

Hochberg, M.

Hong, C. Y.

Hosseinnia, A. H.

Huang, Y.

John, D. D.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Kimerling, L.

Koch, T. L.

T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
[Crossref]

Koren, U.

T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
[Crossref]

Krishnamoorthy, A. V.

Kristensen, M.

Krüger, A. C.

Kung, C. C.

Lei, H.

Leinse, A.

Liang, H.

Lim, A. E.-J.

Liu, G.

Lo, G.-Q.

Love, J. D.

Luff, J.

Malureanu, R.

Michel, J.

Moreira, R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Pathak, S.

Pomerene, A.

Poon, J. K. S.

Pourabolghasem, R.

Riesen, N.

Sacher, W. D.

Shang, K.

Shubin, I.

Simons, J.

Sodagar, M.

Sun, R.

Sze, T.

Thorhauge, M.

Wiaux, V.

Wouters, J.

Yang, S.

Yoo, S. J. B.

Zhang, M.

Zhang, Y.

Zheng, D.

Zheng, X.

Zhuang, Y. X.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

T. L. Koch and U. Koren, “Semiconductor photonic integrated circuits,” IEEE J. Quantum Electron. 27(3), 641–653 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Feng and R. Akimoto, “Vertically coupled silicon nitride microdisk resonant filters,” IEEE Photonics Technol. Lett. 26(23), 2391–2394 (2014).
[Crossref]

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonics Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (8)

M. Sodagar, R. Pourabolghasem, A. A. Eftekhar, and A. Adibi, “High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities,” Opt. Express 22(14), 16767–16777 (2014).
[Crossref] [PubMed]

X. Zheng, J. E. Cunningham, I. Shubin, J. Simons, M. Asghari, D. Feng, H. Lei, D. Zheng, H. Liang, C. C. Kung, J. Luff, T. Sze, D. Cohen, and A. V. Krishnamoorthy, “Optical proximity communication using reflective mirrors,” Opt. Express 16(19), 15052–15058 (2008).
[Crossref] [PubMed]

R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Y. Hong, L. Kimerling, and J. Michel, “Impedance matching vertical optical waveguide couplers for dense high index contrast circuits,” Opt. Express 16(16), 11682–11690 (2008).
[Crossref] [PubMed]

A. H. Hosseinnia, A. H. Atabaki, A. A. Eftekhar, and A. Adibi, “High-quality silicon on silicon nitride integrated optical platform with an octave-spanning adiabatic interlayer coupler,” Opt. Express 23(23), 30297–30307 (2015).
[Crossref] [PubMed]

K. Shang, S. Pathak, B. Guan, G. Liu, and S. J. B. Yoo, “Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits,” Opt. Express 23(16), 21334–21342 (2015).
[Crossref] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
[Crossref] [PubMed]

Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310–1316 (2013).
[Crossref] [PubMed]

M. Zhang, R. Malureanu, A. C. Krüger, and M. Kristensen, “1x3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides,” Opt. Express 18(14), 14944–14949 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Optics (1)

P.-A. Belanger, “Beam quality factor of the LP01 mode of the step-index fiber,” Optics 32, 2107–2109 (1993).

Other (4)

K. Shang, S. Pathak, B. Guan, G. Liu, S. Feng, and S. J. B. Yoo, “Tri-layer, Vertical Y-junction, Si3N4/SiO2 3D Photonic Integrated Circuits with Arbitrary Splitting Ratio,” in Optical Fiber Communication Conference, (2016), paper Tu3E.3.
[Crossref]

S. Pathak, K. Shang, and S. J. B. Yoo, “Experimental demonstration of compact 16 channels-50 GHz Si3N4 arrayed waveguide grating,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu3A.3.
[Crossref]

K. Shang, S. Pathak, G. Liu, and S. J. B. Yoo, “Ultra-low loss vertical optical couplers for 3D photonic integrated circuits,” in Optical Fiber Communication Conference (2015), paper Th1F.6.
[Crossref]

K. Shang, S. Pathak, B. Guan, G. Liu, C. Qin, R. P. Scott, and S. J. B. Yoo, “Si3N4 multilayer platform for photonic integrated circuits,” in The Conference on Lasers and Electro-Optics (2015), paper STu2F.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) A schematic of the 50 nm thick Si3N4 inverse taper edge coupler with SiO2 cladding coupling to fiber; (b) power coupling simulation of the structure in (a) with varying waveguide tip width and fiber mode beam size; (c) a schematic of 150 nm thick Si3N4 inverse taper edge coupler with SiO2 cladding coupling to fiber; (d) simulation of power coupling in structure (c) .
Fig. 2
Fig. 2 A schematic of Si3N4/SiO2 tri-layer platform with the layer thicknesses of 150 nm, 50 nm, and 150 nm, respectively.
Fig. 3
Fig. 3 (a) Simulation of the asymmetric vertical coupling between 50 nm and 150 nm thick Si3N4 layers; (b-d) simulation of the inter-layer crossing loss, reflection, and crosstalk between 150 nm thick Si3N4 waveguides with varying inter-layer gap, where the crossing angle is 90°.
Fig. 4
Fig. 4 (a) The schematic of the vertical Y-junction; (b) the simulation of Poynting Vector for TE polarization in the Y-junction with 600 nm gap between layers; (c) the simulated transmission of output ports on the bottom and top layers with 600 nm lower gap and varying upper gap.
Fig. 5
Fig. 5 (a) The schematic of 1 × 3 vertical couplers; (b-e) the simulated output modes with varying lateral-offset of the two ports on the top layer; (f) the simulated power splitting for each output port.
Fig. 6
Fig. 6 (a) The schematic side view of the 1 × 3 power splitter with inter-layer gap of 600 nm and 1.8 μm; (b) the simulated output modes with power ratio of 1:1:1; (c,d) the simulated transmission of output port on the top or bottom layer with varying wavelength.
Fig. 7
Fig. 7 (a) The schematic of the 1 × 4 coupler; (b) the simulated output modes with splitting ratio of 1:1:1:1.
Fig. 8
Fig. 8 The simulated transmission of the proposed Y-junction, 1 × 3 coupler, and 1 × 4 coupler with TE or TM input over (a) 1530-1565 nm wavelength; (b) 25-100 μm tapering length. For 1 × 4 coupler, the transmission is overlapped between TE and TM input modes.
Fig. 9
Fig. 9 (a) Device photo of the asymmetric vertical coupler between 50 nm and 150 nm thick silicon nitride layers; (b) the measured transmission of straight waveguides and cascaded vertical couplers; (c) linear fitting of the vertical coupling transmission.
Fig. 10
Fig. 10 (a) The photo image of the vertical Y-junctions; (b) the measured transmission of output ports on the top and bottom layers with varying the upper inter-layer gap; (c) the measured transmission with lateral-offset on the top layer.
Fig. 11
Fig. 11 (a) The device photo of 1 × 3 couplers; (b) the zoomed-in photo image of inverse taper tips for three output ports; (c) the measured output spectrum of a 1 × 3 coupler with 2 μm lateral-offset; (d) the measured transmission of output ports on the top and bottom layers with varying lateral-offset.

Metrics