Abstract

ZnO microspheres fabricated via laser ablation in superfluid helium were found to have bubble-like voids. Even a microsphere demonstrating clear whispering gallery mode resonances in the luminescence had voids. Our analysis confirmed that some voids are located away from the surface and have negligible or little effect on the whispering gallery mode resonances since the electromagnetic energy localizes near the surface of these microspheres. The existence of the voids indicates that helium gas or any evaporated target material was present within the molten microparticles during the microsphere formation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultraviolet electroluminescence from hetero p-n junction between a single ZnO microsphere and p-GaN thin film

Norihiro Tetsuyama, Koshi Fusazaki, Yasuaki Mizokami, Tetsuya Shimogaki, Mitsuhiro Higashihata, Daisuke Nakamura, and Tatsuo Okada
Opt. Express 22(8) 10026-10031 (2014)

Optical properties of ZnO microrods grown by a hydrothermal method – a cathodoluminescence study

Agnieszka Pieniążek, Bartłomiej S. Witkowski, Anna Reszka, Marek Godlewski, and Bogdan J. Kowalski
Opt. Mater. Express 6(12) 3741-3750 (2016)

Enhanced upconversion luminescence from ZnO/Zn hybrid nanostructures induced on a Zn foil by femtosecond laser ablation

Hui Li, Cheng-Yun Zhang, Xian-Feng Li, Jin Xiang, Shao-Long Tie, and Sheng Lan
Opt. Express 23(23) 30118-30126 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
    [Crossref]
  2. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref] [PubMed]
  3. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
    [Crossref]
  4. G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
    [Crossref]
  5. M. Nagai, F. Hoshino, S. Yamamoto, R. Shimano, and M. Kuwata-Gonokami, “Spherical cavity-mode laser with self-organized CuCl microspheres,” Opt. Lett. 22, 1630–1632 (1997).
    [Crossref]
  6. T. H.-B. Ngo, C.-H. Chien, S.-H. Wu, and Y.-C. Chang, “Size and morphology dependent evolution of resonant modes in ZnO microspheres grown by hydrothermal synthesis,” Opt. Express 24, 16010–16015 (2016).
    [Crossref] [PubMed]
  7. W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
    [Crossref]
  8. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref] [PubMed]
  9. N. G. Semaltianos, “Nanoparticles by Laser Ablation,” Critical Rev Solid State Mater. Sci. 35, 105–124 (2010).
    [Crossref]
  10. S. Okamoto, S. Ichikawa, Y. Minowa, and M. Ashida, “Optical Fabrication of Semiconductor Single-Crystalline Microspheres in Superfluid Helium,” MRS Online Proc. Library Archive 1635, 103–108 (2014).
  11. S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
    [Crossref] [PubMed]
  12. S. Okamoto, Y. Minowa, and M. Ashida, “White-light lasing in ZnO microspheres fabricated by laser ablation,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2012), paper 82630K.
  13. D. Nakamura, T. Smogaki, K. Okazaki, M. Higashihata, H. Ikenoue, and T. Okada, “Synthesis of Various Sized ZnO Microspheres by Laser Ablation and Their Lasing Characteristics,” J. Laser Micro/Nanoengineering 8, 296–299 (2013).
    [Crossref]
  14. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, “Stability of micron-sized spheres formed by pulsed laser ablation of metals in superfluid helium and water,” High Energy Chem. 48, 206–212 (2014).
    [Crossref]
  15. K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
    [Crossref]
  16. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
    [Crossref]
  17. S. Schiller, “Asymptotic expansion of morphological resonance frequencies in Mie scattering,” Appl. Opt. 32, 2181–2185 (1993).
    [Crossref] [PubMed]
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  19. T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
    [Crossref]
  20. V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54, 184–187 (1992).
    [Crossref]
  21. A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron. 32, 377 (2002).
    [Crossref]
  22. V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.-Usp. 44, 1061 (2001).
    [Crossref]
  23. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010).
    [Crossref] [PubMed]
  24. H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, and A. Srivastava, “A new constraint for chondrule formation: condition for the rim formation of barred-olivine textures,” Earth Planet Sp 63, 8 (2011).
    [Crossref]
  25. T. Ihara, H. Wagata, T. Kogure, K. Katsumata, K. Okada, and N. Matsushita, “Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes,” RSC Adv. 4, 25148–25154 (2014).
    [Crossref]
  26. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [Crossref] [PubMed]

2016 (1)

2014 (4)

E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, “Stability of micron-sized spheres formed by pulsed laser ablation of metals in superfluid helium and water,” High Energy Chem. 48, 206–212 (2014).
[Crossref]

S. Okamoto, S. Ichikawa, Y. Minowa, and M. Ashida, “Optical Fabrication of Semiconductor Single-Crystalline Microspheres in Superfluid Helium,” MRS Online Proc. Library Archive 1635, 103–108 (2014).

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref] [PubMed]

T. Ihara, H. Wagata, T. Kogure, K. Katsumata, K. Okada, and N. Matsushita, “Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes,” RSC Adv. 4, 25148–25154 (2014).
[Crossref]

2013 (1)

D. Nakamura, T. Smogaki, K. Okazaki, M. Higashihata, H. Ikenoue, and T. Okada, “Synthesis of Various Sized ZnO Microspheres by Laser Ablation and Their Lasing Characteristics,” J. Laser Micro/Nanoengineering 8, 296–299 (2013).
[Crossref]

2011 (1)

H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, and A. Srivastava, “A new constraint for chondrule formation: condition for the rim formation of barred-olivine textures,” Earth Planet Sp 63, 8 (2011).
[Crossref]

2010 (2)

2006 (1)

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

2005 (2)

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[Crossref]

2003 (1)

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[Crossref]

2002 (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron. 32, 377 (2002).
[Crossref]

2001 (1)

V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.-Usp. 44, 1061 (2001).
[Crossref]

1998 (1)

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[Crossref]

1997 (1)

1996 (2)

1993 (1)

1992 (1)

V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54, 184–187 (1992).
[Crossref]

1987 (1)

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[Crossref]

1968 (1)

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[Crossref]

’t Hooft, G. W.

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[Crossref]

Alivov, Y. I.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

Ashida, M.

S. Okamoto, S. Ichikawa, Y. Minowa, and M. Ashida, “Optical Fabrication of Semiconductor Single-Crystalline Microspheres in Superfluid Helium,” MRS Online Proc. Library Archive 1635, 103–108 (2014).

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref] [PubMed]

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

S. Okamoto, Y. Minowa, and M. Ashida, “White-light lasing in ZnO microspheres fabricated by laser ablation,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2012), paper 82630K.

Avrutin, V.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

Bianucci, P.

Bohn, E.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Buck, J. R.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[Crossref]

Chang, Y.-C.

Chien, C.-H.

Cho, S.-J.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

Datsyuk, V. V.

V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.-Usp. 44, 1061 (2001).
[Crossref]

V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54, 184–187 (1992).
[Crossref]

Dogan, S.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

Fink, A.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[Crossref]

Foxon, C. T.

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[Crossref]

Gahagan, K. T.

Gordon, E. B.

E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, “Stability of micron-sized spheres formed by pulsed laser ablation of metals in superfluid helium and water,” High Energy Chem. 48, 206–212 (2014).
[Crossref]

Gorodetsky, M. L.

Grundmann, M.

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[Crossref]

Hare, J.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[Crossref]

Haroche, S.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[Crossref]

Higashihata, M.

D. Nakamura, T. Smogaki, K. Okazaki, M. Higashihata, H. Ikenoue, and T. Okada, “Synthesis of Various Sized ZnO Microspheres by Laser Ablation and Their Lasing Characteristics,” J. Laser Micro/Nanoengineering 8, 296–299 (2013).
[Crossref]

Hoshino, F.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Ichikawa, S.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref] [PubMed]

S. Okamoto, S. Ichikawa, Y. Minowa, and M. Ashida, “Optical Fabrication of Semiconductor Single-Crystalline Microspheres in Superfluid Helium,” MRS Online Proc. Library Archive 1635, 103–108 (2014).

Ichimiya, M.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

Ihara, T.

T. Ihara, H. Wagata, T. Kogure, K. Katsumata, K. Okada, and N. Matsushita, “Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes,” RSC Adv. 4, 25148–25154 (2014).
[Crossref]

Iida, T.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref] [PubMed]

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

Ikenoue, H.

D. Nakamura, T. Smogaki, K. Okazaki, M. Higashihata, H. Ikenoue, and T. Okada, “Synthesis of Various Sized ZnO Microspheres by Laser Ablation and Their Lasing Characteristics,” J. Laser Micro/Nanoengineering 8, 296–299 (2013).
[Crossref]

Ilchenko, V. S.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[Crossref]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref] [PubMed]

Imaizumi, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

Inaba, K.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref] [PubMed]

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

Ishihara, H.

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref] [PubMed]

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

Itoh, T.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

Izmailov, I. A.

V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.-Usp. 44, 1061 (2001).
[Crossref]

Karabulin, A. V.

E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, “Stability of micron-sized spheres formed by pulsed laser ablation of metals in superfluid helium and water,” High Energy Chem. 48, 206–212 (2014).
[Crossref]

Katayama, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

Katsumata, K.

T. Ihara, H. Wagata, T. Kogure, K. Katsumata, K. Okada, and N. Matsushita, “Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes,” RSC Adv. 4, 25148–25154 (2014).
[Crossref]

Khodos, I. I.

E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, “Stability of micron-sized spheres formed by pulsed laser ablation of metals in superfluid helium and water,” High Energy Chem. 48, 206–212 (2014).
[Crossref]

Kimble, H. J.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[Crossref]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Kogure, T.

T. Ihara, H. Wagata, T. Kogure, K. Katsumata, K. Okada, and N. Matsushita, “Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes,” RSC Adv. 4, 25148–25154 (2014).
[Crossref]

Kuwata-Gonokami, M.

Lefevre-Seguin, V.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[Crossref]

Liu, C.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

Marsiglio, F.

Matsushita, N.

T. Ihara, H. Wagata, T. Kogure, K. Katsumata, K. Okada, and N. Matsushita, “Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes,” RSC Adv. 4, 25148–25154 (2014).
[Crossref]

Matyushenko, V. I.

E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, “Stability of micron-sized spheres formed by pulsed laser ablation of metals in superfluid helium and water,” High Energy Chem. 48, 206–212 (2014).
[Crossref]

Meldrum, A.

Minowa, Y.

S. Okamoto, S. Ichikawa, Y. Minowa, and M. Ashida, “Optical Fabrication of Semiconductor Single-Crystalline Microspheres in Superfluid Helium,” MRS Online Proc. Library Archive 1635, 103–108 (2014).

S. Okamoto, Y. Minowa, and M. Ashida, “White-light lasing in ZnO microspheres fabricated by laser ablation,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2012), paper 82630K.

Miura, H.

H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, and A. Srivastava, “A new constraint for chondrule formation: condition for the rim formation of barred-olivine textures,” Earth Planet Sp 63, 8 (2011).
[Crossref]

Molenkamp, L. W.

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[Crossref]

Morkoc, H.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

Nagai, M.

Nagashima, K.

H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, and A. Srivastava, “A new constraint for chondrule formation: condition for the rim formation of barred-olivine textures,” Earth Planet Sp 63, 8 (2011).
[Crossref]

Nakamura, D.

D. Nakamura, T. Smogaki, K. Okazaki, M. Higashihata, H. Ikenoue, and T. Okada, “Synthesis of Various Sized ZnO Microspheres by Laser Ablation and Their Lasing Characteristics,” J. Laser Micro/Nanoengineering 8, 296–299 (2013).
[Crossref]

Ngo, T. H.-B.

Nobis, T.

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[Crossref]

Okada, K.

T. Ihara, H. Wagata, T. Kogure, K. Katsumata, K. Okada, and N. Matsushita, “Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes,” RSC Adv. 4, 25148–25154 (2014).
[Crossref]

Okada, T.

D. Nakamura, T. Smogaki, K. Okazaki, M. Higashihata, H. Ikenoue, and T. Okada, “Synthesis of Various Sized ZnO Microspheres by Laser Ablation and Their Lasing Characteristics,” J. Laser Micro/Nanoengineering 8, 296–299 (2013).
[Crossref]

Okamoto, S.

S. Okamoto, S. Ichikawa, Y. Minowa, and M. Ashida, “Optical Fabrication of Semiconductor Single-Crystalline Microspheres in Superfluid Helium,” MRS Online Proc. Library Archive 1635, 103–108 (2014).

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref] [PubMed]

S. Okamoto, Y. Minowa, and M. Ashida, “White-light lasing in ZnO microspheres fabricated by laser ablation,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2012), paper 82630K.

Okazaki, K.

D. Nakamura, T. Smogaki, K. Okazaki, M. Higashihata, H. Ikenoue, and T. Okada, “Synthesis of Various Sized ZnO Microspheres by Laser Ablation and Their Lasing Characteristics,” J. Laser Micro/Nanoengineering 8, 296–299 (2013).
[Crossref]

Oraevsky, A. N.

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron. 32, 377 (2002).
[Crossref]

Ozgur, U.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

Raimond, J.-M.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[Crossref]

Reshchikov, M.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

Roch, J.-F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[Crossref]

Savchenkov, A. A.

Schiller, S.

Semaltianos, N. G.

N. G. Semaltianos, “Nanoparticles by Laser Ablation,” Critical Rev Solid State Mater. Sci. 35, 105–124 (2010).
[Crossref]

Shimano, R.

Sizov, V. D.

E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, “Stability of micron-sized spheres formed by pulsed laser ablation of metals in superfluid helium and water,” High Energy Chem. 48, 206–212 (2014).
[Crossref]

Smogaki, T.

D. Nakamura, T. Smogaki, K. Okazaki, M. Higashihata, H. Ikenoue, and T. Okada, “Synthesis of Various Sized ZnO Microspheres by Laser Ablation and Their Lasing Characteristics,” J. Laser Micro/Nanoengineering 8, 296–299 (2013).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Srivastava, A.

H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, and A. Srivastava, “A new constraint for chondrule formation: condition for the rim formation of barred-olivine textures,” Earth Planet Sp 63, 8 (2011).
[Crossref]

Stober, W.

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[Crossref]

Swartzlander, G. A.

Teke, A.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

Treussart, F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[Crossref]

Tsukamoto, K.

H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, and A. Srivastava, “A new constraint for chondrule formation: condition for the rim formation of barred-olivine textures,” Earth Planet Sp 63, 8 (2011).
[Crossref]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

van der Poel, W. A. J. A.

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[Crossref]

Wagata, H.

T. Ihara, H. Wagata, T. Kogure, K. Katsumata, K. Okada, and N. Matsushita, “Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes,” RSC Adv. 4, 25148–25154 (2014).
[Crossref]

Wu, S.-H.

Yamamoto, S.

Yokoyama, E.

H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, and A. Srivastava, “A new constraint for chondrule formation: condition for the rim formation of barred-olivine textures,” Earth Planet Sp 63, 8 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54, 184–187 (1992).
[Crossref]

Critical Rev Solid State Mater. Sci. (1)

N. G. Semaltianos, “Nanoparticles by Laser Ablation,” Critical Rev Solid State Mater. Sci. 35, 105–124 (2010).
[Crossref]

Earth Planet Sp (1)

H. Miura, E. Yokoyama, K. Nagashima, K. Tsukamoto, and A. Srivastava, “A new constraint for chondrule formation: condition for the rim formation of barred-olivine textures,” Earth Planet Sp 63, 8 (2011).
[Crossref]

Eur. Phys. J. D (1)

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[Crossref]

High Energy Chem. (1)

E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, and I. I. Khodos, “Stability of micron-sized spheres formed by pulsed laser ablation of metals in superfluid helium and water,” High Energy Chem. 48, 206–212 (2014).
[Crossref]

J. Appl. Phys. (1)

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 11 (2005).
[Crossref]

J. Colloid Interface Sci. (1)

W. Stober, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968).
[Crossref]

J. Laser Micro/Nanoengineering (1)

D. Nakamura, T. Smogaki, K. Okazaki, M. Higashihata, H. Ikenoue, and T. Okada, “Synthesis of Various Sized ZnO Microspheres by Laser Ablation and Their Lasing Characteristics,” J. Laser Micro/Nanoengineering 8, 296–299 (2013).
[Crossref]

MRS Online Proc. Library Archive (1)

S. Okamoto, S. Ichikawa, Y. Minowa, and M. Ashida, “Optical Fabrication of Semiconductor Single-Crystalline Microspheres in Superfluid Helium,” MRS Online Proc. Library Archive 1635, 103–108 (2014).

Nature (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (2)

T. Nobis and M. Grundmann, “Low-order optical whispering-gallery modes in hexagonal nanocavities,” Phys. Rev. A 72, 063806 (2005).
[Crossref]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[Crossref]

Phys. Rev. B (1)

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[Crossref]

Phys. Stat. Sol. (1)

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, “Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium,” Phys. Stat. Sol. 243, 3829–3833 (2006).
[Crossref]

Phys.-Usp. (1)

V. V. Datsyuk and I. A. Izmailov, “Optics of microdroplets,” Phys.-Usp. 44, 1061 (2001).
[Crossref]

Quantum Electron. (1)

A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron. 32, 377 (2002).
[Crossref]

RSC Adv. (1)

T. Ihara, H. Wagata, T. Kogure, K. Katsumata, K. Okada, and N. Matsushita, “Template-free solvothermal preparation of ZnO hollow microspheres covered with c planes,” RSC Adv. 4, 25148–25154 (2014).
[Crossref]

Sci. Rep. (1)

S. Okamoto, K. Inaba, T. Iida, H. Ishihara, S. Ichikawa, and M. Ashida, “Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials,” Sci. Rep. 4, 5186 (2014).
[Crossref] [PubMed]

Other (2)

S. Okamoto, Y. Minowa, and M. Ashida, “White-light lasing in ZnO microspheres fabricated by laser ablation,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2012), paper 82630K.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM images of a ZnO microsphere fabricated via laser ablation in superfluid helium before (a and c) and after (b and d) the FIB cross-sectioning. The microphere was observed from the perpendicular direction (a and b) or 38° oblique (c and d) to the cross-sectioned surface normal.

Fig. 2
Fig. 2

Cathodoluminescence spectrum from the ZnO microsphere shown in Fig. 1, before the FIB cross-sectioning. The dotted lines correspond to the WGM resonance wavelengths estimated from Mie scattering theory. The numbers above the graph indicate the polar mode number l.

Fig. 3
Fig. 3

Calculated WGM electric field intensity distribution within the ZnO microsphere with a radius of 1.033 μm, a radial mode number n = 1, a polar mode number l = 19 and an azimuthal mode number m = l. Polar (a) and azimuthal (b) distributions.

Fig. 4
Fig. 4

Serial cross-sectioned images of a ZnO microsphere fabricated via the laser ablation in superfluid helium. The microsphere was observed from the perpendicular direction (a–f) or 38° oblique (g–l) to the cross-sectioned surface normal.

Fig. 5
Fig. 5

Cathodoluminescence spectrum from the ZnO microsphere shown in Fig. 4 before the FIB cross-sectioning.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 π n material r = λ l ( l + 1 2 ) ,
n material ( h ν ) = 1.916 + 1.145 × 10 2 ( h ν ) 2 + 1.6507 × 10 3 ( h ν ) 4 ,
| t n | [ 1 2 ( l + 1 2 ) ] 1 / 3 λ 2 π n material ,

Metrics