Abstract

A linear phase-modulated photonic link with the dispersion-induced power fading effect suppressed based on optical carrier band (OCB) processing is proposed. By introducing a proper phase shift to the OCB, the third-order intermodulation distortion (IMD3) component of the signal transmitted over a length of fiber is effectively suppressed, while the fundamental component is shifted to be away from the notch point of the transmission response. The IMD3 and the dispersion-induced power fading effect are effectively suppressed simultaneously to realize a linear phase-modulated photonic link, and the simplicity is preserved. Theoretical analyses are taken and an experiment is carried out. Simultaneous suppression of IMD3 and dispersion-induced power fading effect is achieved. An improvement of larger than 10 dB in third-order spurious-free dynamic range (SFDR3) for both the RF frequency around the notch point and the peak point of the transmission response curve for a 20-km link is realized, as compared with the traditional phase-modulated photonic link without the OCB processing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing

Yan Cui, Yitang Dai, Feifei Yin, Jian Dai, Kun Xu, Jianqiang Li, and Jintong Lin
Opt. Express 21(20) 23433-23440 (2013)

SFDR enhancement in analog photonic links by simultaneous compensation for dispersion and nonlinearity

Zhiyu Chen, Lianshan Yan, Wei Pan, Bin Luo, Xihua Zou, Yinghui Guo, Hengyun Jiang, and Tao Zhou
Opt. Express 21(18) 20999-21009 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. D. Zhu, J. Chen, and S. Pan, “Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator,” Opt. Express 24(10), 11009–11016 (2016).
    [Crossref] [PubMed]
  4. T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
    [Crossref]
  5. Y. Shen, B. Hraimel, X. Zhang, G. E. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
    [Crossref]
  6. A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photonics Technol. Lett. 21(7), 438–440 (2009).
    [Crossref]
  7. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
    [Crossref]
  8. M. Huang, J. Fu, and S. Pan, “Linearized analog photonic links based on a dual-parallel polarization modulator,” Opt. Lett. 37(11), 1823–1825 (2012).
    [Crossref] [PubMed]
  9. W. Li and J. Yao, “Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop,” Opt. Express 21(13), 15692–15697 (2013).
    [Crossref] [PubMed]
  10. G. Zhang, S. Li, X. Zheng, H. Zhang, B. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave ROF links,” Opt. Express 20(15), 17214–17219 (2012).
    [Crossref]
  11. Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
    [Crossref] [PubMed]
  12. P. Li, L. Yan, T. Zhou, W. Li, Z. Chen, W. Pan, and B. Luo, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett. 38(14), 2391–2393 (2013).
    [Crossref] [PubMed]
  13. J. Li, Y. C. Zhang, S. Yu, and W. Gu, “Optical Sideband Processing Approach for Highly Linear Phase-Modulation/Direct-Detection Microwave Photonics Link,” IEEE Photonics J. 6(5), 1–10 (2014).
  14. H. Chi, X. Zou, and J. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device,” J. Lightwave Technol. 27(5), 511–521 (2009).
    [Crossref]
  15. J. Chen, D. Zhu, and S. L. Pan, “Linearized phase-modulated analog photonic link based on optical carrier band processing”, in WOCC 2016 (2016).
  16. C. H. Cox, Analog optical links: theory and practice (Cambridge University Press, 2006), Chap. 6.
  17. M. Chen, H. Yu, and J. Wang, “Silicon Photonics-Based Signal Processing for Microwave Photonic Frontend,” Silicon Photonics III (Springer, 2016), Chap. 11.

2016 (1)

2014 (1)

J. Li, Y. C. Zhang, S. Yu, and W. Gu, “Optical Sideband Processing Approach for Highly Linear Phase-Modulation/Direct-Detection Microwave Photonics Link,” IEEE Photonics J. 6(5), 1–10 (2014).

2013 (3)

2012 (2)

2010 (2)

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Y. Shen, B. Hraimel, X. Zhang, G. E. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

2009 (3)

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, J.

Chen, Z.

Chi, H.

Clark, T. R.

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

Cowan, G. E.

Y. Shen, B. Hraimel, X. Zhang, G. E. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Cui, Y.

Dai, J.

Dai, Y.

Dennis, M. L.

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

Ferreira, A.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photonics Technol. Lett. 21(7), 438–440 (2009).
[Crossref]

Fonseca, D.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photonics Technol. Lett. 21(7), 438–440 (2009).
[Crossref]

Fu, J.

Gu, W.

J. Li, Y. C. Zhang, S. Yu, and W. Gu, “Optical Sideband Processing Approach for Highly Linear Phase-Modulation/Direct-Detection Microwave Photonics Link,” IEEE Photonics J. 6(5), 1–10 (2014).

Hraimel, B.

Y. Shen, B. Hraimel, X. Zhang, G. E. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Huang, M.

Li, J.

J. Li, Y. C. Zhang, S. Yu, and W. Gu, “Optical Sideband Processing Approach for Highly Linear Phase-Modulation/Direct-Detection Microwave Photonics Link,” IEEE Photonics J. 6(5), 1–10 (2014).

Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
[Crossref] [PubMed]

Li, P.

Li, S.

G. Zhang, S. Li, X. Zheng, H. Zhang, B. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave ROF links,” Opt. Express 20(15), 17214–17219 (2012).
[Crossref]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Li, W.

Lin, J.

Liu, T.

Y. Shen, B. Hraimel, X. Zhang, G. E. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Luo, B.

Monteiro, P.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photonics Technol. Lett. 21(7), 438–440 (2009).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pan, S.

Pan, W.

Ribeiro, R.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photonics Technol. Lett. 21(7), 438–440 (2009).
[Crossref]

Shen, Y.

Y. Shen, B. Hraimel, X. Zhang, G. E. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Silveira, T.

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photonics Technol. Lett. 21(7), 438–440 (2009).
[Crossref]

Wu, K.

Y. Shen, B. Hraimel, X. Zhang, G. E. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Xiang, P.

Xu, K.

Yan, L.

Yao, J.

Yin, F.

Yu, S.

J. Li, Y. C. Zhang, S. Yu, and W. Gu, “Optical Sideband Processing Approach for Highly Linear Phase-Modulation/Direct-Detection Microwave Photonics Link,” IEEE Photonics J. 6(5), 1–10 (2014).

Zhang, G.

Zhang, H.

G. Zhang, S. Li, X. Zheng, H. Zhang, B. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave ROF links,” Opt. Express 20(15), 17214–17219 (2012).
[Crossref]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhang, X.

Y. Shen, B. Hraimel, X. Zhang, G. E. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

Zhang, Y. C.

J. Li, Y. C. Zhang, S. Yu, and W. Gu, “Optical Sideband Processing Approach for Highly Linear Phase-Modulation/Direct-Detection Microwave Photonics Link,” IEEE Photonics J. 6(5), 1–10 (2014).

Zheng, X.

G. Zhang, S. Li, X. Zheng, H. Zhang, B. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave ROF links,” Opt. Express 20(15), 17214–17219 (2012).
[Crossref]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhou, B.

G. Zhang, S. Li, X. Zheng, H. Zhang, B. Zhou, and P. Xiang, “Dynamic range improvement strategy for Mach-Zehnder modulators in microwave/millimeter-wave ROF links,” Opt. Express 20(15), 17214–17219 (2012).
[Crossref]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

Zhou, T.

Zhu, D.

Zou, X.

IEEE Photonics J. (1)

J. Li, Y. C. Zhang, S. Yu, and W. Gu, “Optical Sideband Processing Approach for Highly Linear Phase-Modulation/Direct-Detection Microwave Photonics Link,” IEEE Photonics J. 6(5), 1–10 (2014).

IEEE Photonics Technol. Lett. (3)

A. Ferreira, T. Silveira, D. Fonseca, R. Ribeiro, and P. Monteiro, “Highly linear integrated optical transmitter for subcarrier multiplexed systems,” IEEE Photonics Technol. Lett. 21(7), 438–440 (2009).
[Crossref]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010).
[Crossref]

T. R. Clark and M. L. Dennis, “Coherent optical phase-modulation link,” IEEE Photonics Technol. Lett. 19(16), 1206–1208 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

Y. Shen, B. Hraimel, X. Zhang, G. E. Cowan, K. Wu, and T. Liu, “A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems,” IEEE Trans. Microw. Theory Tech. 58(11), 3327–3335 (2010).
[Crossref]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Other (3)

J. Chen, D. Zhu, and S. L. Pan, “Linearized phase-modulated analog photonic link based on optical carrier band processing”, in WOCC 2016 (2016).

C. H. Cox, Analog optical links: theory and practice (Cambridge University Press, 2006), Chap. 6.

M. Chen, H. Yu, and J. Wang, “Silicon Photonics-Based Signal Processing for Microwave Photonic Frontend,” Silicon Photonics III (Springer, 2016), Chap. 11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram and (b) operation principle of the proposed phase-modulated analog photonic link based on optical carrier band processing. LD: laser diode, PM: phase modulator, OCBP: optical carrier band processor, SMF: single mode fiber, PD: photodetector, OCB: optical carrier band.
Fig. 2
Fig. 2 The experimental transmission response of the PM based analog photonic link without introducing any phase shift to the optical carrier band.
Fig. 3
Fig. 3 The simulated fundamental to IMD3 ratio values versus the phase shift φ introducing to the optical carrier band for different modulation indices with the RF working frequency around (a) 18 GHz and (b) 14 GHz.
Fig. 4
Fig. 4 Experimental electrical spectra of the output fundamental signal and their IMD3 for the 14-GHz working condition (a) without (b) with introducing a phase shift of 155°to the optical carrier band.
Fig. 5
Fig. 5 Experimental SFDR performance of the PM based analog photonic link (a) without (b) with introducing a phase shift of 155°to the optical carrier band for the 14-GHz working condition.
Fig. 6
Fig. 6 The experimental transmission response of the PM based analog photonic link with introducing a phase shift of 155°to the optical carrier band.
Fig. 7
Fig. 7 Experimental electrical spectra of the output fundamental signal and their IMD3 for the 18-GHz working condition (a) without (b) with introducing a phase shift of 135°to the optical carrier band.
Fig. 8
Fig. 8 Experimental SFDR performance of the PM based analog photonic link (a) without (b) with introducing a phase shift of 135°to the optical carrier band for the 18-GHz working condition.
Fig. 9
Fig. 9 The experimental transmission response of the PM based analog photonic link with introducing a phase shift of 135°to the optical carrier band.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E P M ( t ) = E 0 cos [ ω 0 t + m ( cos ω 1 t + cos ω 2 t ) ]
E P M ( t ) = E 0 l = n = { J l ( m ) J n ( m ) cos [ ω 0 t + l ω 1 t + n ω 2 t + 0.5 π ( l + n ) ] }
E O C B ( t ) = E 0 { J 0 2 cos ( ω c t + φ ) + J 1 J 1 [ cos ( ( ω c + ω 1 ω 2 ) t + φ ) + cos ( ( ω c + ω 2 ω 1 ) t + φ ) ] }
E P M ( t ) = E 0 { J 0 2 cos ( ω c t + φ ) + J 1 J 1 cos [ ( ω c + ω 1 , 2 ω 2 , 1 ) t + θ ω c + ω 1 , 2 ω 2 , 1 + φ ] J 1 J 0 sin [ ( ω c + ω 1 , 2 ) t + θ ω c + ω 1 , 2 ] J 2 J 1 sin [ ( ω c + 2 ω 1 , 2 ω 2 , 1 ) t + θ ω c + 2 ω 1 , 2 ω 2 , 1 ] + J 1 J 0 sin [ ( ω c ω 1 , 2 ) t + θ ω c ω 1 , 2 ] + J 2 J 1 sin [ ( ω c 2 ω 1 , 2 + ω 2 , 1 ) t + θ ω c 2 ω 1 , 2 + ω 2 , 1 ] J 2 J 0 cos [ ( ω c + 2 ω 1 , 2 ) t + θ ω c + 2 ω 1 , 2 ] J 2 J 0 cos [ ( ω c 2 ω 1 , 2 ) t + θ ω c 2 ω 1 , 2 ] }
I cos [ ω 1 , 2 ( t + L β ' ' ( ω c ) ) ] J 1 J 0 3 sin [ 0.5 L β ' ' ( ω c ) ω 1 , 2 2 φ ] + cos [ ( 2 ω 1 , 2 ω 2 , 1 ) ( t + L β ' ' ( ω c ) ) ] { J 1 3 J 0 sin [ φ + 0.5 L β ' ' ( ω c ) ( ( ω 1 ω 2 ) 2 ω 1 , 2 2 ) ] + J 0 2 J 2 J 1 sin [ φ 0.5 L β ' ' ( ω c ) ( 2 ω 1 , 2 ω 2 , 1 ) 2 ] + J 0 2 J 2 J 1 sin [ 2 L β ' ' ( ω c ) ω 1 , 2 2 0.5 L β ' ' ( ω c ) ω 2 , 1 2 ] }
{ I c = J 1 J 0 3 sin [ 0.5 L β ' ' ( ω c ) ω 1 , 2 2 φ ] I I M D 3 = { J 1 3 J 0 sin [ φ + 0.5 L β ' ' ( ω c ) ( ( ω 1 ω 2 ) 2 ω 1 , 2 2 ) ] + J 0 2 J 2 J 1 sin [ φ 0.5 L β ' ' ( ω c ) ( 2 ω 1 , 2 ω 2 , 1 ) 2 ] + J 0 2 J 2 J 1 sin [ 2 L β ' ' ( ω c ) ω 1 , 2 2 0.5 L β ' ' ( ω c ) ω 2 , 1 2 ] }
{ I c = J 1 J 0 3 sin [ 0.5 L β ' ' ( ω c ) ω 1 , 2 2 φ ] I I M D 3 = { ( J 1 3 J 0 + J 0 2 J 2 J 1 ) sin [ φ 0.5 L β ' ' ( ω c ) ω 1 , 2 2 ] + J 0 2 J 2 J 1 sin [ 1.5 L β ' ' ( ω c ) ω 1 , 2 2 ] }

Metrics