Abstract

A depth-dependent dispersion compensation algorithm for enhancing the image quality of the Fourier-domain optical coherence tomography (OCT) is presented. The dispersion related with depth in the sample is considered. Using the iterative method, an analytical formula for compensating the depth-dependent dispersion in the sample is obtained. We apply depth-dependent dispersion compensation algorithm to process the phantom images and in vivo images. Using sharpness metric based on variation coefficient to compare the results processed with different dispersion compensation algorithms, we find that the depth-dependent dispersion compensation algorithm can improve image quality at full depth.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

28 April 2017: A correction was made to the author listing.

3 May 2017: A correction was made to the funding section.


OSA Recommended Articles
Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm

Bernd Hofer, Boris Považay, Angelika Unterhuber, Ling Wang, Boris Hermann, Sara Rey, Gerald Matz, and Wolfgang Drexler
Opt. Express 18(5) 4898-4919 (2010)

Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT

Dierck Hillmann, Tim Bonin, Christian Lührs, Gesa Franke, Martin Hagen-Eggert, Peter Koch, and Gereon Hüttmann
Opt. Express 20(6) 6761-6776 (2012)

Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control

S. Witte, M. Baclayon, E. J. G. Peterman, R. F. G. Toonen, H. D. Mansvelder, and M. L. Groot
Opt. Express 17(14) 11335-11349 (2009)

References

  • View by:
  • |
  • |
  • |

  1. X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
    [Crossref]
  2. N. Nan, X. Wang, P. Bu, Z. Li, X. Guo, Y. Chen, X. Wang, F. Yuan, and O. Sasaki, “Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation,” Appl. Opt. 53(12), 2669–2676 (2014).
    [Crossref] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  4. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
    [Crossref] [PubMed]
  5. X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
    [Crossref] [PubMed]
  6. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref] [PubMed]
  7. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28(11), 905–907 (2003).
    [Crossref] [PubMed]
  8. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002).
    [Crossref] [PubMed]
  9. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [Crossref] [PubMed]
  10. L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282(7), 1488–1495 (2009).
    [Crossref]
  11. C. C. Rosa, J. Rogers, and A. G. Podoleanu, “Fast scanning transmissive delay line for optical coherence tomography,” Opt. Lett. 30(24), 3263–3265 (2005).
    [Crossref] [PubMed]
  12. A. Fercher, C. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9(12), 610–615 (2001).
    [Crossref] [PubMed]
  13. B. J. Huang, P. Bu, X. Z. Wang, and N. Nan, “Optical coherence tomography based on depth resolved dispersion compensation,” Acta Opt. Sin. 32(2), 0217002 (2012).
    [Crossref]
  14. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42(16), 3038–3046 (2003).
    [Crossref] [PubMed]
  15. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  16. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
    [Crossref] [PubMed]
  17. R. Ferzli and L. J. Karam, “A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB),” IEEE Trans. Image Process. 18(4), 717–728 (2009).
    [Crossref] [PubMed]
  18. S. Diddams and J. C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13(6), 1120–1129 (1996).
    [Crossref]
  19. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
    [Crossref] [PubMed]
  20. N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Process. 9(4), 636–650 (2000).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
[Crossref]

2012 (2)

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

B. J. Huang, P. Bu, X. Z. Wang, and N. Nan, “Optical coherence tomography based on depth resolved dispersion compensation,” Acta Opt. Sin. 32(2), 0217002 (2012).
[Crossref]

2011 (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

2009 (2)

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282(7), 1488–1495 (2009).
[Crossref]

R. Ferzli and L. J. Karam, “A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB),” IEEE Trans. Image Process. 18(4), 717–728 (2009).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2004 (2)

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (1)

2001 (1)

2000 (1)

N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Process. 9(4), 636–650 (2000).
[Crossref] [PubMed]

1999 (1)

1996 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ahnelt, P. K.

Anger, E. M.

Apolonski, A.

Bizheva, K.

Boppart, S. A.

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Process. 9(4), 636–650 (2000).
[Crossref] [PubMed]

Bu, P.

N. Nan, X. Wang, P. Bu, Z. Li, X. Guo, Y. Chen, X. Wang, F. Yuan, and O. Sasaki, “Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation,” Appl. Opt. 53(12), 2669–2676 (2014).
[Crossref] [PubMed]

X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
[Crossref]

B. J. Huang, P. Bu, X. Z. Wang, and N. Nan, “Optical coherence tomography based on depth resolved dispersion compensation,” Acta Opt. Sin. 32(2), 0217002 (2012).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.

Cowey, A.

Damera-Venkata, N.

N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Process. 9(4), 636–650 (2000).
[Crossref] [PubMed]

Diddams, S.

Diels, J. C.

Drexler, W.

Duker, J.

Duker, J. S.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Evans, B. L.

N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Process. 9(4), 636–650 (2000).
[Crossref] [PubMed]

Fercher, A.

Fercher, A. F.

Ferzli, R.

R. Ferzli and L. J. Karam, “A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB),” IEEE Trans. Image Process. 18(4), 717–728 (2009).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Froehly, L.

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282(7), 1488–1495 (2009).
[Crossref]

Fujimoto, J.

Fujimoto, J. G.

Furfaro, L.

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282(7), 1488–1495 (2009).
[Crossref]

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Geisler, W. S.

N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Process. 9(4), 636–650 (2000).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Guo, X.

N. Nan, X. Wang, P. Bu, Z. Li, X. Guo, Y. Chen, X. Wang, F. Yuan, and O. Sasaki, “Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation,” Appl. Opt. 53(12), 2669–2676 (2014).
[Crossref] [PubMed]

X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

Hitzenberger, C.

Huang, B. J.

X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
[Crossref]

B. J. Huang, P. Bu, X. Z. Wang, and N. Nan, “Optical coherence tomography based on depth resolved dispersion compensation,” Acta Opt. Sin. 32(2), 0217002 (2012).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ippen, E. P.

Jacques, S. L.

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

Jeanningros, P.

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282(7), 1488–1495 (2009).
[Crossref]

Jung, G.

Karam, L. J.

R. Ferzli and L. J. Karam, “A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB),” IEEE Trans. Image Process. 18(4), 717–728 (2009).
[Crossref] [PubMed]

Karamata, B.

Kärtner, F. X.

Kite, T. D.

N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Process. 9(4), 636–650 (2000).
[Crossref] [PubMed]

Knight, J. C.

Ko, T.

Kowalczyk, A.

Lasser, T.

Le, T.

Li, X. D.

Li, Z.

Li, Z. L.

X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Marks, D. L.

Morgan, J. E.

Morgner, U.

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nan, N.

N. Nan, X. Wang, P. Bu, Z. Li, X. Guo, Y. Chen, X. Wang, F. Yuan, and O. Sasaki, “Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation,” Appl. Opt. 53(12), 2669–2676 (2014).
[Crossref] [PubMed]

X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
[Crossref]

B. J. Huang, P. Bu, X. Z. Wang, and N. Nan, “Optical coherence tomography based on depth resolved dispersion compensation,” Acta Opt. Sin. 32(2), 0217002 (2012).
[Crossref]

Oldenburg, A. L.

Pitris, C.

Podoleanu, A. G.

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Reynolds, J. J.

Rogers, J.

Rosa, C. C.

Russell, P. S. J.

Sandoz, P.

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282(7), 1488–1495 (2009).
[Crossref]

Sasaki, O.

N. Nan, X. Wang, P. Bu, Z. Li, X. Guo, Y. Chen, X. Wang, F. Yuan, and O. Sasaki, “Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation,” Appl. Opt. 53(12), 2669–2676 (2014).
[Crossref] [PubMed]

X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
[Crossref]

Sattmann, H.

Scherzer, E.

Schubert, C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Srinivasan, V.

Srinivasan, V. J.

Sticker, M.

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stur, M.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Tempea, G.

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Tuchin, V. V.

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wang, X.

Wang, X. Z.

X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
[Crossref]

B. J. Huang, P. Bu, X. Z. Wang, and N. Nan, “Optical coherence tomography based on depth resolved dispersion compensation,” Acta Opt. Sin. 32(2), 0217002 (2012).
[Crossref]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

Wen, X.

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

Wojtkowski, M.

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Yakovlev, V.

Yuan, F.

Zawadzki, R.

Zhu, D.

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

Acta Opt. Sin. (1)

B. J. Huang, P. Bu, X. Z. Wang, and N. Nan, “Optical coherence tomography based on depth resolved dispersion compensation,” Acta Opt. Sin. 32(2), 0217002 (2012).
[Crossref]

Appl. Opt. (2)

IEEE Trans. Image Process. (3)

N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Process. 9(4), 636–650 (2000).
[Crossref] [PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13(4), 600–612 (2004).
[Crossref] [PubMed]

R. Ferzli and L. J. Karam, “A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB),” IEEE Trans. Image Process. 18(4), 717–728 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

Nat. Med. (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Opt. Commun. (2)

L. Froehly, L. Furfaro, P. Sandoz, and P. Jeanningros, “Dispersion compensation properties of grating-based temporal-correlation optical coherence tomography systems,” Opt. Commun. 282(7), 1488–1495 (2009).
[Crossref]

X. Guo, P. Bu, X. Z. Wang, O. Sasaki, N. Nan, B. J. Huang, and Z. L. Li, “Scattering imaging of skin in Fourier domain optical coherence tomography,” Opt. Commun. 305, 137–142 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Flow chart of depth-dependent dispersion compensation algorithm.

Fig. 2
Fig. 2

Schematic of the OCT system. L1~L2: Lens; C1~C2: Collimator; ND: Neutral Density Filter; PC: Polarization Controller.

Fig. 3
Fig. 3

(a)Spectrum from the light source. (b) Point spread function of OCT system.

Fig. 4
Fig. 4

(a)Schematic and (b) B-scan image of phantom.

Fig. 5
Fig. 5

Fitting line between the second-order dispersion compensation coefficient and imaging depth in phantom.

Fig. 6
Fig. 6

B-scan images of phantom. (a)Image without dispersion compensation. (b) Image with constant coefficient algorithm. (c) Image with polynomial fitting algorithm. (d) Image with depth-dependent algorithm.

Fig. 7
Fig. 7

(a)Three regions for image assessment in the B-scan image of phantom. (b) Variation coefficients of different regions processed with different dispersion compensation algorithms.

Fig. 8
Fig. 8

(a) Photograph of live goldfish. (b) B-scan image of live fisheye.

Fig. 9
Fig. 9

B-scan images of fisheye. (a) Image without dispersion compensation. (b) Image with constant coefficient algorithm. (c) Image with polynomial fitting algorithm. (d) Image with depth-dependent algorithm.

Fig. 10
Fig. 10

(a)Three regions for image assessment in the B-scan image of in vivo fisheye. (b) Variation coefficients of different regions processed with different dispersion compensation algorithms.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S int ( k ) = 2 Re { Σ n I n ( k ) I r ( k ) exp [ i φ ( k , Δ z n ) ] } = 2 Re { Σ n I n ( k ) I r ( k ) exp { i [ k Δ z n + Φ ( k , Δ z n ) ] } } ,
φ ( k , Δ z n ) = β n ( k ) Δ z n ,
φ ( k , Δ z n ) = β n ( k ) Δ z n = [ n n ( k 0 ) k 0 + n g , n ( k 0 ) ( k k 0 ) + β n ' ' ( k 0 ) ( k k 0 ) 2 2 ! + β n ' ' ' ( k 0 ) ( k k 0 ) 3 3 ! + ... ] Δ z n = n n ( k 0 ) k 0 Δ z n + n g , n ( k 0 ) Δ z n ( k k 0 ) + β n ' ' ( k 0 ) 2 ! Δ z n ( k k 0 ) 2 + β n ' ' ' ( k 0 ) 3 ! Δ z n ( k k 0 ) 3 + ... = n n ( k 0 ) k 0 Δ z n + n g , n ( k 0 ) Δ z n ( k k 0 ) + a 2 ( k k 0 ) 2 + a 3 ( k k 0 ) 3 + ... ,
β n ' ' ( k 0 ) = λ 0 3 2 π ( d 2 n n d λ 2 ) .
C .V= 1 N x y [ f ( x , y ) μ ] 2 μ ,
a 2 = 138.8 × d e p t h 41.7 ,
a 2 = 130.4 × d e p t h 44.

Metrics