Abstract

A wideband tunable optoelectronic oscillator (OEO) based on the deamplification of stimulated Brillouin scattering (SBS) is proposed and experimentally demonstrated. A tunable single passband microwave photonic filter (MPF) utilizing phase modulation and SBS deamplification is used to realize the tunability of the OEO. Theoretical analysis of the MPF and phase noise performance of the OEO are presented. The frequency response of the MPF is determined by the + 1st sideband attenuation due to SBS deamplification and phase shift difference between the two sidebands due to chromatic dispersion and SBS. The close-in (< 1 MHz) phase noise of the proposed OEO is shown to be dominated by the laser frequency noise via phase shift of SBS. The conversion of the laser frequency noise to the close-in phase noise of the proposed OEO is effectively reduced compared with the OEO based on amplification by SBS. Tunable 7 to 40 GHz signals are experimentally obtained. The single-sideband (SSB) phase noise at 10 kHz offset is −128 dBc/Hz for 10.30 GHz signal. Compared with the OEO based on SBS amplification, the proposed OEO can achieve a phase noise performance improvement beyond 20 dB at 10 kHz offset. The maximum frequency and power drifts at 10.69 GHz are within 1 ppm and 1.4 dB during 1000 seconds, respectively. To achieve better close-in phase noise performance, lower frequency noise laser and higher pump power are preferred. The experimental results agree well with the theoretical models.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. S. Khanna, “Microwave oscillators: The state of the technology,” Microwave J. 49(22), 22–44 (2006).
  2. E. Camargo, Design of FET Frequency Multipliers and Harmonic Oscillators (Artech House, 1998).
  3. D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based optoelectronic oscillator,” in Proceedings of IEEE MTT-S Int. Microw. Symp. Dig., 2185–2187 (2003).
  4. L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  5. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  6. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
    [Crossref]
  7. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(4), 2097 (2013).
    [PubMed]
  8. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
    [Crossref]
  9. A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
    [Crossref] [PubMed]
  10. W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
    [Crossref]
  11. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38(5), 655–657 (2013).
    [Crossref] [PubMed]
  12. D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
    [Crossref]
  13. J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
    [Crossref]
  14. P. Wang, J. Xiong, T. Zhang, D. Chen, P. Xiang, J. Zheng, Y. Zhang, R. Li, L. Huang, T. Pu, and X. Chen, “Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection,” Opt. Express 23(16), 20450–20458 (2015).
    [Crossref] [PubMed]
  15. J. Capmany, “Microwave photonic filters,” in Proceedings of Conference on Optical Fiber Communication Conference (OFC, 2012), paper OW3I.4.
    [Crossref]
  16. S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2016).
    [Crossref]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  18. M. G. Herraez, K. Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
    [Crossref]
  19. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(17), 1552–1554 (2002).
    [Crossref] [PubMed]
  20. R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
    [Crossref]
  21. R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
    [Crossref] [PubMed]
  22. H. Peng, Y. Xu, C. Zhang, P. Guo, L. Zhu, W. Hu, and Z. Chen, “Widely tunable optoelectronic oscillator utilizing an optical notch filter based on the deamplification of stimulated Brillouin scattering,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2015), paper SW3M.4.
    [Crossref]
  23. H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, W. Hu, and Z. Chen, “Tunable DC-60GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering,” J. Lightwave Technol. 33(13), 2707–2715 (2015).
    [Crossref]
  24. M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
    [Crossref] [PubMed]
  25. L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
    [Crossref] [PubMed]
  26. D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4(1), 23–30 (2017).
    [Crossref]
  27. K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
    [Crossref]
  28. D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
    [Crossref]
  29. O. Okusaga, J. P. Cahill, A. Docherty, C. R. Menyuk, W. Zhou, and G. M. Carter, “Suppression of Rayleigh-scattering-induced noise in OEOs,” Opt. Express 21(19), 22255–22262 (2013).
    [Crossref] [PubMed]
  30. W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
    [Crossref]
  31. J. P. Cahill, W. Zhou, and C. R. Menyuk, “Additive phase noise of fiber-optic links used in photonic microwave-generation systems,” Appl. Opt. 56(3), B18–B25 (2017).
    [Crossref] [PubMed]
  32. W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
    [Crossref]
  33. H. Peng, X. Peng, Y. Xu, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Suppression of phase noise induced by optical interference in optoelectronic oscillators,” in Proceedings of Conference on Optoelectronics and Communications (OECC 2016).
  34. X. S. Yao and L. Maleki, “Multi-loop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
    [Crossref]
  35. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [Crossref]
  36. E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University, 2008).
  37. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
    [Crossref]
  38. A. P. S. Khanna and J. Buenrostro, “2 to 22 GHz low phase noise sillicon bipolar YIG tuned oscillator using composite feedback,” in Proceedings of IEEE MTI-S Int. Microw. Symp. Dig., 1297–1299 (1992).
  39. M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
    [Crossref]
  40. K. Xu, Z. Wu, J. Zheng, J. Dai, Y. Dai, F. Yin, J. Li, Y. Zhou, and J. Lin, “Long-term stability improvement of tunable optoelectronic oscillator using dynamic feedback compensation,” Opt. Express 23(10), 12935–12941 (2015).
    [Crossref] [PubMed]
  41. NKT Photonics Inc., “Analysis of laser frequency stability using beat-note measurement,” (2013).

2017 (3)

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

J. P. Cahill, W. Zhou, and C. R. Menyuk, “Additive phase noise of fiber-optic links used in photonic microwave-generation systems,” Appl. Opt. 56(3), B18–B25 (2017).
[Crossref] [PubMed]

D. Huang, P. Pintus, C. Zhang, P. Morton, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Dynamically reconfigurable integrated optical circulators,” Optica 4(1), 23–30 (2017).
[Crossref]

2016 (2)

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
[Crossref] [PubMed]

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2016).
[Crossref]

2015 (4)

2014 (1)

J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

2013 (6)

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(4), 2097 (2013).
[PubMed]

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38(5), 655–657 (2013).
[Crossref] [PubMed]

O. Okusaga, J. P. Cahill, A. Docherty, C. R. Menyuk, W. Zhou, and G. M. Carter, “Suppression of Rayleigh-scattering-induced noise in OEOs,” Opt. Express 21(19), 22255–22262 (2013).
[Crossref] [PubMed]

R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

2012 (3)

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
[Crossref]

2011 (2)

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

2010 (3)

2008 (1)

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

2006 (2)

A. P. S. Khanna, “Microwave oscillators: The state of the technology,” Microwave J. 49(22), 22–44 (2006).

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

2005 (1)

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

2002 (1)

2000 (1)

X. S. Yao and L. Maleki, “Multi-loop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

1998 (1)

W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
[Crossref]

1996 (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Alexandre, C.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Bouchand, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Bouwmans, G.

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

Bowers, J. E.

Buenrostro, J.

A. P. S. Khanna and J. Buenrostro, “2 to 22 GHz low phase noise sillicon bipolar YIG tuned oscillator using composite feedback,” in Proceedings of IEEE MTI-S Int. Microw. Symp. Dig., 1297–1299 (1992).

Cahill, J.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
[Crossref]

Cahill, J. P.

Cao, Y.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Carter, G. M.

Cater, G.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
[Crossref]

Chan, E. H. W.

Chazelas, J.

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

Chembo, Y. K.

Chen, D.

Chen, X.

Chen, Z.

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Coq, Y. L.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Dai, J.

Dai, Y.

Dale, E.

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

Daryoush, A. S.

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

Datta, S.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Deborgies, F.

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

Decoster, D.

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Docherty, A.

O. Okusaga, J. P. Cahill, A. Docherty, C. R. Menyuk, W. Zhou, and G. M. Carter, “Suppression of Rayleigh-scattering-induced noise in OEOs,” Opt. Express 21(19), 22255–22262 (2013).
[Crossref] [PubMed]

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
[Crossref]

Dong, J.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Eggleton, B. J.

Eliyahu, D.

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based optoelectronic oscillator,” in Proceedings of IEEE MTT-S Int. Microw. Symp. Dig., 2185–2187 (2003).

Feng, X.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Gao, D.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Gao, L.

J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

Giunta, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Guan, B.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Guo, P.

Hansel, W.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Herraez, M. G.

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

Holzwarth, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Horowitz, M.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
[Crossref]

Hu, W.

Huang, D.

Huang, L.

Ilchenko, V. S.

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Joshi, A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Kaba, M.

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

Kabakova, I. V.

Khanna, A. P. S.

A. P. S. Khanna, “Microwave oscillators: The state of the technology,” Microwave J. 49(22), 22–44 (2006).

A. P. S. Khanna and J. Buenrostro, “2 to 22 GHz low phase noise sillicon bipolar YIG tuned oscillator using composite feedback,” in Proceedings of IEEE MTI-S Int. Microw. Symp. Dig., 1297–1299 (1992).

Kikuchi, K.

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Larger, L.

Lee, H.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(4), 2097 (2013).
[PubMed]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Levy, E.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
[Crossref]

Lezius, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Li, H.-W.

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

Li, J.

Li, R.

Li, W.

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

Li, Z.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Liang, W.

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

Lin, J.

Liu, L.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Lours, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Madden, S. J.

Maleki, L.

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

X. S. Yao and L. Maleki, “Multi-loop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based optoelectronic oscillator,” in Proceedings of IEEE MTT-S Int. Microw. Symp. Dig., 2185–2187 (2003).

Matsko, A. B.

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

Menyuk, C.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
[Crossref]

Menyuk, C. R.

Merklein, M.

Minasian, R. A.

Mizumoto, T.

Morton, P.

Murakowski, J. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Mutugala, U. S.

Nicolodi, D.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Okusaga, O.

O. Okusaga, J. P. Cahill, A. Docherty, C. R. Menyuk, W. Zhou, and G. M. Carter, “Suppression of Rayleigh-scattering-induced noise in OEOs,” Opt. Express 21(19), 22255–22262 (2013).
[Crossref] [PubMed]

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
[Crossref]

Peng, H.

H. Peng, C. Zhang, X. Xie, T. Sun, P. Guo, X. Zhu, W. Hu, and Z. Chen, “Tunable DC-60GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering,” J. Lightwave Technol. 33(13), 2707–2715 (2015).
[Crossref]

H. Peng, X. Peng, Y. Xu, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Suppression of phase noise induced by optical interference in optoelectronic oscillators,” in Proceedings of Conference on Optoelectronics and Communications (OECC 2016).

Peng, X.

H. Peng, X. Peng, Y. Xu, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Suppression of phase noise induced by optical interference in optoelectronic oscillators,” in Proceedings of Conference on Optoelectronics and Communications (OECC 2016).

Pintus, P.

Prather, D. W.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Preussler, S.

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2016).
[Crossref]

Pu, T.

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Quiquempois, Y.

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Rubiola, E.

Santarelli, G.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Savchenkov, A. A.

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

Schneider, G. J.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Schneider, T.

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2016).
[Crossref]

Schuetz, C. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Seidel, D.

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Voltage-controlled photonic oscillator,” Opt. Lett. 35(10), 1572–1574 (2010).
[Crossref] [PubMed]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

Shi, S.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Shieh, W.

W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
[Crossref]

Shoji, Y.

Slavík, R.

Song, K. Y.

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

Stiller, B.

Sun, T.

Takushima, Y.

Tanemura, T.

Tao, R.

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Thevenaz, L.

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

Tremblin, P. A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Vahala, K. J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(4), 2097 (2013).
[PubMed]

Vilcot, J.-P.

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

Volyanskiy, K.

Vu, K.

Wang, P.

Wu, Z.

Xiang, P.

Xie, X.

Xiong, J.

Xu, K.

Xu, Y.

H. Peng, X. Peng, Y. Xu, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Suppression of phase noise induced by optical interference in optoelectronic oscillators,” in Proceedings of Conference on Optoelectronics and Communications (OECC 2016).

Yao, J.

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

Yao, J. P.

J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

Yao, X. S.

X. S. Yao and L. Maleki, “Multi-loop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Yi, X.

Yin, F.

Zhang, C.

Zhang, J.

J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

Zhang, T.

Zhang, X.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Zhang, Y.

Zheng, A.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Zheng, J.

Zhou, W.

Zhou, Y.

Zhu, L.

X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter,” Opt. Lett. 38(5), 655–657 (2013).
[Crossref] [PubMed]

H. Peng, X. Peng, Y. Xu, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Suppression of phase noise induced by optical interference in optoelectronic oscillators,” in Proceedings of Conference on Optoelectronics and Communications (OECC 2016).

Zhu, X.

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. G. Herraez, K. Y. Song, and L. Thevenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

X. S. Yao and L. Maleki, “Multi-loop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

IEEE Microw. Mag. (1)

M. Kaba, H.-W. Li, A. S. Daryoush, J.-P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7(4), 38–47 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (4)

W. Shieh and L. Maleki, “Phase noise of optical interference in photonic RF systems,” IEEE Photonics Technol. Lett. 10(11), 1617–1619 (1998).
[Crossref]

R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, “Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 24(13), 1097–1099 (2012).
[Crossref]

D. Eliyahu, W. Liang, E. Dale, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, and L. Maleki, “Resonant widely tunable opto-electronic oscillator,” IEEE Photonics Technol. Lett. 25(15), 1535–1538 (2013).
[Crossref]

J. Zhang, L. Gao, and J. P. Yao, “Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter,” IEEE Photonics Technol. Lett. 26(4), 326–329 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

W. Li and J. Yao, “A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(6), 1735–1742 (2012).
[Crossref]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech. 56(2), 449–456 (2008).
[Crossref]

J. Lightwave Technol. (2)

Microwave J. (1)

A. P. S. Khanna, “Microwave oscillators: The state of the technology,” Microwave J. 49(22), 22–44 (2006).

Nat. Commun. (1)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4(4), 2097 (2013).
[PubMed]

Nat. Photonics (4)

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hansel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. L. Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Opt. Eng. (1)

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing,” Opt. Eng. 55(3), 031110 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (1)

Proc. SPIE (1)

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for optoelectronic oscillator,” Proc. SPIE 8255, 37 (2012).
[Crossref]

Sci. Rep. (1)

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5(1), 10190 (2015).
[Crossref] [PubMed]

Other (9)

H. Peng, Y. Xu, C. Zhang, P. Guo, L. Zhu, W. Hu, and Z. Chen, “Widely tunable optoelectronic oscillator utilizing an optical notch filter based on the deamplification of stimulated Brillouin scattering,” in Proceedings of Conference on Lasers and Electro-optics (CLEO, 2015), paper SW3M.4.
[Crossref]

NKT Photonics Inc., “Analysis of laser frequency stability using beat-note measurement,” (2013).

A. P. S. Khanna and J. Buenrostro, “2 to 22 GHz low phase noise sillicon bipolar YIG tuned oscillator using composite feedback,” in Proceedings of IEEE MTI-S Int. Microw. Symp. Dig., 1297–1299 (1992).

H. Peng, X. Peng, Y. Xu, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Suppression of phase noise induced by optical interference in optoelectronic oscillators,” in Proceedings of Conference on Optoelectronics and Communications (OECC 2016).

E. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University, 2008).

E. Camargo, Design of FET Frequency Multipliers and Harmonic Oscillators (Artech House, 1998).

D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based optoelectronic oscillator,” in Proceedings of IEEE MTT-S Int. Microw. Symp. Dig., 2185–2187 (2003).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

J. Capmany, “Microwave photonic filters,” in Proceedings of Conference on Optical Fiber Communication Conference (OFC, 2012), paper OW3I.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Left part: schematic diagram of the proposed OEO. PM: phase modulator; ISO: optical isolator; NZ-DSF: none-zero dispersion shifted fiber; OC: optical coupler; SMF1, SMF2: single-mode fibers; PD1, PD2: photodiodes; EC1, EC2: electrical couplers; LNA: low noise amplifier; ELPF: electrical lowpass filter; PA: power amplifier; PC: polarization controller; ESA: electrical spectrum analyzer. Right part: optical spectra of the nodes (A, B, and C). λ0, λp: wavelength of the signal pump lasers; νB: Brillouin frequency shift.

Fig. 2
Fig. 2

(a) Setup for frequency response measurement of the MPF utilizing the sideband deamplification of SBS. (b) Schematic diagram of the amplitude and phase responses induced by the narrow-band optical gain and loss spectral areas of SBS to the + 1st phase modulated sideband.

Fig. 3
Fig. 3

Simulation results of the frequency response of the MPF. (a) The + 1st sideband amplitude response and phase shift difference compared with the −1st sideband induced by the chromatic dispersion and SBS. (b) Frequency responses of the MPF. (c) Comparison of passband responses with different center frequencies. (d) Calculated tunable single passband responses of the MPF.

Fig. 4
Fig. 4

(a) Phase noise model of the proposed dual-loop OEO based on the deamplification of SBS. (b) Phasor representation of a noisy sinusoid RF carrier.

Fig. 5
Fig. 5

Simulation results of the phase noise performance for the proposed OEO. (a) A comparison of phase noise induced by different noise sources in the proposed OEO. (b) A comparison of additive phase noises contributed by the conversion of laser frequency noise via SBS deamplification and amplification. (c) Simulated SSB phase noise of the OEOs based on the deamplification and amplification of SBS. (d) A comparison of phase noise at 10 kHz offset between the OEOs based on the deamplification and amplification of SBS.

Fig. 6
Fig. 6

Measured frequency response of the MPF. (a) Frequency responses induced by the sideband deamplification and amplification of SBS. (b) Comparison of frequency responses at different passband frequencies.

Fig. 7
Fig. 7

Measured frequency responses of the tunable single passband MPF by changing the wavelength of the signal laser. (a) Passband responses with center frequency tuned from 7 GHz to 20 GHz. (b) Passband responses with center frequency tuned from 21 GHz to 36 GHz.

Fig. 8
Fig. 8

Optical and electrical spectra of the generated 10.3 GHz signal. (a) Optical spectrum. (b) Electrical spectrum.

Fig. 9
Fig. 9

(a) Electrical spectra for the tunable range from 7 to 12 GHz. (b) Electrical spectra for the tunable range from 13 to 20 GHz. (c) Electrical spectra for the tunable range from 21 to 28 GHz. (d) Electrical spectra for the tunable range from 29 to 40 GHz.

Fig. 10
Fig. 10

Measured SSB phase noises of the microwave signals generated by the proposed OEO. (a) SSB phase noises of the generated 8.28 GHz with dual-loop fiber lengths of 1.1 km-1.2 km and 2.1 km-2.2 km. (b) Measured SSB phase noise of the generated signal with different oscillation frequencies and dual-loop fiber lengths of 2.1 km-2.2 km.

Fig. 11
Fig. 11

Measured frequency and power fluctuations of the proposed OEO. (a), (b): Frequency and power fluctuations of the generated 10.69 GHz signal, respectively.

Fig. 12
Fig. 12

Experimental measurements for the tested laser frequency noises and the corresponding SSB phase noises of the OEOs. (a) Measured frequency noises of the lasers. (b) A comparison between the calculated and measured SSB phase noises. The olive curve (1), blue curve (3), and red curve (5) stand for the measured SSB phase noises. The wine curve (2), magenta curve (4), and purple curve (6) stand for the calculated SSB phase noises through model in Eq. (17), but multiplied the transfer function of the dual-loop OEO. Dark yellow curve (7) stands for the phase noise induced by the flicker phase noise of the cascaded amplifiers.

Fig. 13
Fig. 13

(a) Comparison of SSB phase noise of the OEOs based on SBS amplification and deamplification. (b) Comparison of phase noise at 10 kHz offset for the two OEOs.

Tables (2)

Tables Icon

Table 1 Simulation parameters for the response of MPF

Tables Icon

Table 2 Simulation parameters for the phase noise of the proposed OEO

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E(t) P 0 e j2π f 0 t [ J 1 (β) e j2π f m t + J 0 (β)+ J 1 (β) e j2π f m t ]
E ' (t) P 0 e j(2π f 0 t β 0 L) [α J 1 (β) e j2π f m (t n g L c ) e j 2πDL λ 0 2 f m 2 c e jδ + J 0 (β)+ J 1 (β) e j2π f m (t n g L c ) e j 2πDL λ 0 2 f m 2 c ]
E +1st (L)= E +1st (0)exp( g B I p L)
g B = 1 2 g p 12j( v v B Δ v B )
E +1st (L)= E +1st (0)α e jδ
v v B = f osc f m
α=exp(Re( g B I p L))=exp( g p I p L 1 1+4 ( f osc f m Δ v B ) 2 )
δ=Im( g B I p L)= g p I p L f m f osc Δ v B 1+4 ( f m f osc Δ v B ) 2
I ph [1+ α 2 2αcos( 4πDL λ 0 2 f m 2 c δ)] cos(2π f m t+ φ 0 )
|H(j f m )| [1+ α 2 2αcos( 4πDL λ 0 2 f m 2 c δ)]
φ e + φ o =2kπ (k=0,±1,±2...)
I ph ' [cos( φ CD ) α min cos( φ CD +δ)]cos(2π f osc t)[sin( φ CD )+ α min sin( φ CD +δ)]sin(2π f osc t)
I ph ' (1 α min )cos(2π f osc t)+( φ CD + α min φ CD + α min δ)sin(2π f osc t)
I ph_noised ' (1 α min )cos(2π f osc t)+ α min Δδsin(2π f osc t)
Δ φ D tan(Δ φ D )= α min 1 α min Δδ
Δδ g p I p L Δ v B (Δ v laser_s Δ v laser_p 2 n p v A c Δ v laser_p )
S SBS_D (f)= [ 1 exp( g p I p L)1 g p I p L Δ v B ] 2 [ S v,laser_s (f)+ S v,laser_p (f)]
Δ φ A tan(Δ φ A )= G max 1 G max Δδ
S SBS_A (f)= [ exp( g p I p L) 1exp( g p I p L) g p I p L Δ v B ] 2 [ S v,laser_s (f)+ S v,laser_p (f)]
S CD (f)= 1 2 ( 2π f osc λ 0 2 DL c ) 2 S v,laser_s (f)
S Interference (f)=2 r c r PD sin 2 (2π f osc τ d ) sin 2 (πf τ d ) f 2 S v,laser_s (f)
(f)=( FkT+2q I ph R+ N rin I ph 2 R 2 P RF + b 1 f + S SBS_D (f)+ S CD (f)+ S Interference (f))| H dualloop (jf) | 2
S v,laser (f)= C 1 + C 2 /f
Δ f osc f osc = Δ φ D 2Q

Metrics