Abstract

We propose a method to improve the resolution of coherent anti-Stokes Raman scattering microscopy (CARS), and present a theoretical model. The proposed method, coherent anti-Stokes Raman scattering difference microscopy (CARS-D), is based on the intensity difference between two differently acquired images. One being the conventional CARS image, and the other obtained when the sample is illuminated by a doughnut shaped spot. The final super-resolution CARS-D image is constructed by intensity subtraction of these two images. However, there is a subtractive factor between them, and the theoretical model sets this factor to obtain the best imaging effect.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy

Ji-Xin Cheng, Andreas Volkmer, and X. Sunney Xie
J. Opt. Soc. Am. B 19(6) 1363-1375 (2002)

Polarization coherent anti-Stokes Raman scattering microscopy

Ji-Xin Cheng, Lewis D. Book, and X. Sunney Xie
Opt. Lett. 26(17) 1341-1343 (2001)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
    [Crossref] [PubMed]
  2. A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
    [Crossref] [PubMed]
  3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  4. Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
    [Crossref]
  5. R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
    [Crossref]
  6. J. Song, J. H. Xian, H. B. Niu, and J. L. Qu, “Significantly enhanced third harmonic generation using individual Au nanorods coated with gain materials,” IEEE Photonics J. 7(4), 4500909 (2015).
    [Crossref]
  7. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
    [Crossref] [PubMed]
  8. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  9. Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
    [Crossref]
  10. Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
    [Crossref]
  11. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  12. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
    [Crossref] [PubMed]
  13. S. L. Liu, W. Liu, D. N. Chen, J. L. Qu, and H. B. Niu, “Research on coherent anti-Stokes Raman scattering microscopy,” ACTA Phys. 65, 064204 (2016).
  14. S. W. Zhang, D. N. Chen, S. L. Liu, W. Liu, and H. B. Niu, “Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging,” ACTA Phys. 64, 223301 (2015).
  15. C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
    [Crossref] [PubMed]
  16. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  17. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  18. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  19. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  20. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
    [Crossref]
  21. W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268(5216), 1483–1487 (1995).
    [Crossref] [PubMed]
  22. H. Kano, H. T. M. Voort, M. Schrader, G. M. P. Kempen, and S. W. Hell, “Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy,” Bioimaging 4(3), 187–197 (1996).
    [Crossref]
  23. A. Sentenac, K. Belkebir, H. Giovannini, and P. C. Chaumet, “High-resolution total-internal-reflection fluorescence microscopy using periodically nanostructured glass slides,” J. Opt. Soc. Am. A 26(12), 2550–2557 (2009).
    [Crossref] [PubMed]
  24. Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
    [Crossref] [PubMed]
  25. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
    [Crossref] [PubMed]
  26. K. Xu, H. P. Babcock, and X. Zhuang, “Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton,” Nat. Methods 9(2), 185–188 (2012).
    [Crossref] [PubMed]
  27. A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
    [Crossref] [PubMed]
  28. W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
    [Crossref] [PubMed]
  29. W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
    [Crossref]
  30. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
    [Crossref] [PubMed]
  31. V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
    [Crossref] [PubMed]
  32. W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
    [Crossref]
  33. W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 4795–4804 (2011).
    [Crossref]
  34. C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
    [Crossref]
  35. C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
    [Crossref]
  36. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
    [Crossref] [PubMed]
  37. Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
    [Crossref]

2017 (2)

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

2016 (3)

S. L. Liu, W. Liu, D. N. Chen, J. L. Qu, and H. B. Niu, “Research on coherent anti-Stokes Raman scattering microscopy,” ACTA Phys. 65, 064204 (2016).

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

2015 (3)

S. W. Zhang, D. N. Chen, S. L. Liu, W. Liu, and H. B. Niu, “Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging,” ACTA Phys. 64, 223301 (2015).

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

J. Song, J. H. Xian, H. B. Niu, and J. L. Qu, “Significantly enhanced third harmonic generation using individual Au nanorods coated with gain materials,” IEEE Photonics J. 7(4), 4500909 (2015).
[Crossref]

2013 (3)

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
[Crossref]

2012 (4)

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

K. Xu, H. P. Babcock, and X. Zhuang, “Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton,” Nat. Methods 9(2), 185–188 (2012).
[Crossref] [PubMed]

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
[Crossref]

2011 (2)

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 4795–4804 (2011).
[Crossref]

2010 (3)

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, and H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010).
[Crossref] [PubMed]

V. Raghunathan and E. O. Potma, “Multiplicative and subtractive focal volume engineering in coherent Raman microscopy,” J. Opt. Soc. Am. A 27(11), 2365–2374 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2006 (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

2005 (1)

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

2001 (1)

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1999 (2)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1998 (1)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

1996 (1)

H. Kano, H. T. M. Voort, M. Schrader, G. M. P. Kempen, and S. W. Hell, “Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy,” Bioimaging 4(3), 187–197 (1996).
[Crossref]

1995 (1)

W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268(5216), 1483–1487 (1995).
[Crossref] [PubMed]

1994 (1)

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

1962 (1)

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Anselmetti, D.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Babcock, H. P.

K. Xu, H. P. Babcock, and X. Zhuang, “Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton,” Nat. Methods 9(2), 185–188 (2012).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Beeker, W. P.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Belkebir, K.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Boller, K. J.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Book, L. D.

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Brakenhoff, G. J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Brasselet, S.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

Brodehl, A.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Carrington, W. A.

W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268(5216), 1483–1487 (1995).
[Crossref] [PubMed]

Chaumet, P. C.

Chen, D. N.

S. L. Liu, W. Liu, D. N. Chen, J. L. Qu, and H. B. Niu, “Research on coherent anti-Stokes Raman scattering microscopy,” ACTA Phys. 65, 064204 (2016).

S. W. Zhang, D. N. Chen, S. L. Liu, W. Liu, and H. B. Niu, “Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging,” ACTA Phys. 64, 223301 (2015).

Cheng, J. X.

Cleff, C.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Cremer, C.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Dieding, M.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Duboisset, J.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

Fallnich, C.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Fatima, A.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Fay, F. S.

W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268(5216), 1483–1487 (1995).
[Crossref] [PubMed]

Ferrand, P.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

Fogarty, K. E.

W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268(5216), 1483–1487 (1995).
[Crossref] [PubMed]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Gao, B. Z.

Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
[Crossref]

Gasecka, A.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

Gayda, S.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Giovannini, H.

Gross, P.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

Groß, P.

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

Gross, P.

Gu, B. B.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
[Crossref]

Gummert, J.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Hajek, K. M.

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Hedde, P. N.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Heilemann, M.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Heintzmann, R.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Hell, S. W.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

H. Kano, H. T. M. Voort, M. Schrader, G. M. P. Kempen, and S. W. Hell, “Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy,” Bioimaging 4(3), 187–197 (1996).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Herek, J. L.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Hu, R.

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

Isenberg, G.

W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268(5216), 1483–1487 (1995).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kano, H.

H. Kano, H. T. M. Voort, M. Schrader, G. M. P. Kempen, and S. W. Hell, “Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy,” Bioimaging 4(3), 187–197 (1996).
[Crossref]

Kempen, G. M. P.

H. Kano, H. T. M. Voort, M. Schrader, G. M. P. Kempen, and S. W. Hell, “Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy,” Bioimaging 4(3), 187–197 (1996).
[Crossref]

Kim, J. S.

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

Klauke, B.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Kruse, K.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

Kuang, C.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
[Crossref]

Kuzmin, A.

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

Lee, C. J.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Lee, D. Y.

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Li, S.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
[Crossref]

Li, Y.

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

Lin, D.

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

Lin, Y. N.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Littleton, B.

Liu, H.

Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
[Crossref]

Liu, L.

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

Liu, S. L.

S. L. Liu, W. Liu, D. N. Chen, J. L. Qu, and H. B. Niu, “Research on coherent anti-Stokes Raman scattering microscopy,” ACTA Phys. 65, 064204 (2016).

S. W. Zhang, D. N. Chen, S. L. Liu, W. Liu, and H. B. Niu, “Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging,” ACTA Phys. 64, 223301 (2015).

Liu, W.

S. L. Liu, W. Liu, D. N. Chen, J. L. Qu, and H. B. Niu, “Research on coherent anti-Stokes Raman scattering microscopy,” ACTA Phys. 65, 064204 (2016).

S. W. Zhang, D. N. Chen, S. L. Liu, W. Liu, and H. B. Niu, “Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging,” ACTA Phys. 64, 223301 (2015).

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 4795–4804 (2011).
[Crossref]

Liu, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Lynch, R. M.

W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268(5216), 1483–1487 (1995).
[Crossref] [PubMed]

Maker, P. D.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

McIntyre, T. J.

Milting, H.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Moore, E. D. W.

W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268(5216), 1483–1487 (1995).
[Crossref] [PubMed]

Müller, M.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Nienhaus, G. U.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Niu, H.

Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
[Crossref]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 4795–4804 (2011).
[Crossref]

Niu, H. B.

S. L. Liu, W. Liu, D. N. Chen, J. L. Qu, and H. B. Niu, “Research on coherent anti-Stokes Raman scattering microscopy,” ACTA Phys. 65, 064204 (2016).

J. Song, J. H. Xian, H. B. Niu, and J. L. Qu, “Significantly enhanced third harmonic generation using individual Au nanorods coated with gain materials,” IEEE Photonics J. 7(4), 4500909 (2015).
[Crossref]

S. W. Zhang, D. N. Chen, S. L. Liu, W. Liu, and H. B. Niu, “Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging,” ACTA Phys. 64, 223301 (2015).

Offerhaus, H. L.

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. P. Beeker, P. Gross, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K. J. Boller, “A route to sub-diffraction-limited CARS Microscopy,” Opt. Express 17(25), 22632–22638 (2009).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Panwar, N.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Peng, X.

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
[Crossref]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Pliss, A.

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

Potma, E. O.

Prasad, P. N.

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

Qi, J.

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

Qin, W.

Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
[Crossref]

Qu, J.

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
[Crossref]

Qu, J. L.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

S. L. Liu, W. Liu, D. N. Chen, J. L. Qu, and H. B. Niu, “Research on coherent anti-Stokes Raman scattering microscopy,” ACTA Phys. 65, 064204 (2016).

J. Song, J. H. Xian, H. B. Niu, and J. L. Qu, “Significantly enhanced third harmonic generation using individual Au nanorods coated with gain materials,” IEEE Photonics J. 7(4), 4500909 (2015).
[Crossref]

Raghunathan, V.

Rigneault, H.

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Šaric, T.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Savage, C. M.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

Schrader, M.

H. Kano, H. T. M. Voort, M. Schrader, G. M. P. Kempen, and S. W. Hell, “Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy,” Bioimaging 4(3), 187–197 (1996).
[Crossref]

Sentenac, A.

Shao, Y.

Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
[Crossref]

Sharma, A.

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Song, J.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

J. Song, J. H. Xian, H. B. Niu, and J. L. Qu, “Significantly enhanced third harmonic generation using individual Au nanorods coated with gain materials,” IEEE Photonics J. 7(4), 4500909 (2015).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Squier, J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Terhune, R. W.

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

Tjin, S. C.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Turk, D.

Voort, H. T. M.

H. Kano, H. T. M. Voort, M. Schrader, G. M. P. Kempen, and S. W. Hell, “Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy,” Bioimaging 4(3), 187–197 (1996).
[Crossref]

Walhorn, V.

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

Wang, Y.

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
[Crossref]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Westphal, V.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

Wichmann, J.

Wilson, K. R.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

Wu, Q.

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

Xian, J. H.

J. Song, J. H. Xian, H. B. Niu, and J. L. Qu, “Significantly enhanced third harmonic generation using individual Au nanorods coated with gain materials,” IEEE Photonics J. 7(4), 4500909 (2015).
[Crossref]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Xu, J. H.

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

Xu, K.

K. Xu, H. P. Babcock, and X. Zhuang, “Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton,” Nat. Methods 9(2), 185–188 (2012).
[Crossref] [PubMed]

Xu, Y.

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
[Crossref]

Yang, Z.

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

Yap, S. H. K.

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

Yong, K. T.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Yuan, Y. F.

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Zeng, S. W.

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

Zhang, S. W.

S. W. Zhang, D. N. Chen, S. L. Liu, W. Liu, and H. B. Niu, “Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging,” ACTA Phys. 64, 223301 (2015).

Zhuang, X.

K. Xu, H. P. Babcock, and X. Zhuang, “Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton,” Nat. Methods 9(2), 185–188 (2012).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

ACTA Phys. (2)

S. L. Liu, W. Liu, D. N. Chen, J. L. Qu, and H. B. Niu, “Research on coherent anti-Stokes Raman scattering microscopy,” ACTA Phys. 65, 064204 (2016).

S. W. Zhang, D. N. Chen, S. L. Liu, W. Liu, and H. B. Niu, “Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging,” ACTA Phys. 64, 223301 (2015).

Appl. Phys. B (1)

Y. Shao, H. Liu, W. Qin, J. Qu, X. Peng, H. Niu, and B. Z. Gao, “Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator,” Appl. Phys. B 108(4), 713–716 (2012).
[Crossref]

Bioimaging (1)

H. Kano, H. T. M. Voort, M. Schrader, G. M. P. Kempen, and S. W. Hell, “Avalanche photodiode detection with object scanning and image restoration provides 2-4 fold resolution increase in two-photon fluorescence microscopy,” Bioimaging 4(3), 187–197 (1996).
[Crossref]

Chem. Soc. Rev. (1)

Z. Yang, A. Sharma, J. Qi, X. Peng, D. Y. Lee, R. Hu, D. Lin, J. Qu, and J. S. Kim, “Super-resolution fluorescent materials: an insight into design and bioimaging applications,” Chem. Soc. Rev. 45(17), 4651–4667 (2016).
[Crossref] [PubMed]

Coord. Chem. Rev. (2)

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Y. F. Yuan, N. Panwar, S. H. K. Yap, Q. Wu, S. W. Zeng, J. H. Xu, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “SERS-based ultrasensitive sensing platform: An insight into design and practical applications,” Coord. Chem. Rev. 337, 1–33 (2017).
[Crossref]

IEEE Photonics J. (1)

J. Song, J. H. Xian, H. B. Niu, and J. L. Qu, “Significantly enhanced third harmonic generation using individual Au nanorods coated with gain materials,” IEEE Photonics J. 7(4), 4500909 (2015).
[Crossref]

J. Biol. Chem. (1)

A. Brodehl, P. N. Hedde, M. Dieding, A. Fatima, V. Walhorn, S. Gayda, T. Šarić, B. Klauke, J. Gummert, D. Anselmetti, M. Heilemann, G. U. Nienhaus, and H. Milting, “Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants,” J. Biol. Chem. 287(19), 16047–16057 (2012).
[Crossref] [PubMed]

J. Microsc. (2)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191(3), 266–274 (1998).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Raman Spectrosc. (1)

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “A theoretical investigation of super-resolution CARS imaging via coherent and incoherent saturation of transitions,” J. Raman Spectrosc. 42(10), 1854–1858 (2011).
[Crossref]

Nat. Commun. (1)

C. Cleff, A. Gasecka, P. Ferrand, H. Rigneault, S. Brasselet, and J. Duboisset, “Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering,” Nat. Commun. 7, 11562 (2016).
[Crossref] [PubMed]

Nat. Methods (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

K. Xu, H. P. Babcock, and X. Zhuang, “Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton,” Nat. Methods 9(2), 185–188 (2012).
[Crossref] [PubMed]

Opt. Eng. (1)

Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, “Time-gated stimulated emission depletion nanoscopy,” Opt. Eng. 52(9), 093107 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (4)

W. P. Beeker, C. J. Lee, K. J. Boller, P. Groß, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81(1), 012507 (2010).
[Crossref]

W. Liu and H. Niu, “Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy by additional probe-beam-induced phonon depletion,” Phys. Rev. A 83(2), 4795–4804 (2011).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86(2), 5946–5951 (2012).
[Crossref]

C. Cleff, P. Gross, C. Fallnich, H. L. Offerhaus, J. L. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K. J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87(3), 033830 (2013).
[Crossref]

Phys. Rev. B Condens. Matter (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett. 8(10), 404–406 (1962).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005).
[Crossref] [PubMed]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Proc. SPIE (1)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Sci. Rep. (1)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Science (3)

W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay, “Superresolution three-dimensional images of fluorescence in cells with minimal light exposure,” Science 268(5216), 1483–1487 (1995).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Theranostics (1)

A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, and P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging,” Theranostics 5(9), 919–930 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Illustration of CARS-D method.

Fig. 2
Fig. 2

(a) TEM image of the polystyrene beads with the size 6.25 μm×6.25 μm; (b) Experimental CARS image of one polystyrene bead marked with the green circle in Fig. 2 (a); (c) Intensity distribution of Ias along the green line in Fig. 2 (b); (d) Theoretical CARS image of Fig. 2 (a); (e) Intensity distribution of Ias along the green line in Fig. 2 (d); (f) Local enlarged curve marked with the green circle in Fig. 2 (e).

Fig. 3
Fig. 3

(a) Doughnut CARS image of the polystyrene beads; (b) CARS-D image of the polystyrene beads; (c) Intensity distribution of Ias along the green line in Fig. 3(b); (d) Local enlarged curve marked with the green circle in Fig. 3 (e).

Fig. 4
Fig. 4

(a) Illustration of the effective excitation areas of conventional CARS signal (red dotted line), doughnut CARS signal (blue dotted line) and CARS-D signal (green dotted line). (b) A spoke-like test sample.

Fig. 5
Fig. 5

(a) Conventional CARS image. (b) Doughnut CARS image. (c) CARS-D image.

Fig. 6
Fig. 6

CARS-D images with different subtractive factors using the parula color-map.

Fig. 7
Fig. 7

CARS-D images with different subtractive factors using the lines color-map.

Fig. 8
Fig. 8

Spatial resolution as function of factors k1 and k2: (a) inner spatial resolution, SRin, as a function of k1 with k2 = kM = 1; (b) SRin as a function of k2 with k1 = kM = 1; (c) outer spatial resolution, SRout, as a function of k1 with k2 = kM = 1; (d) SRout as a function of k2 with k1 = kM = 1.

Fig. 9
Fig. 9

(a) Golgi complex visual image (as an irregular test sample), (b) conventional CARS image, (c) doughnut CARS image, and (d) CARS-D image.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I as E as 2 [ ρ E p 2 ( r ) E s ( r ) ] 2 ,
E p (r)= E p0 exp( r 2 r p 2 ),
E s1 (r)= E s10 exp( r 2 r s1 2 ),
E s2 (r)= E s20 rexp( r 2 r s2 2 ),
I as1 [ ρ E p0 2 exp( 2 r 2 r p 2 ) E s1 exp( r 2 r s1 2 ) ] 2 ,
I as2 [ ρ E p0 2 exp( 2 r 2 r p 2 ) E s2 rexp( r 2 r s2 2 ) ] 2 .
Δ I as = I as1 k M I as2 ,
Δ I as ρ 2 exp( 16 r 2 λ 2 ){ exp[ 8 r 2 ( k 1 λ ) 2 ] k M M 2 r 2 exp[ 8 r 2 ( k 2 λ ) 2 ] }.
V 1 = 0 rdr 0 2π dθ exp( 16 r 2 λ 2 )exp[ 8 r 2 ( k 1 λ ) 2 ]= π a 1 ,
a 1 = 16 λ 2 + 8 ( k 1 λ ) 2 ,
V 2 = 0 rdr 0 2π dθ exp( 16 r 2 λ 2 )( r 2 )exp[ 8 r 2 ( k 2 λ ) 2 ]= π a 2 2 ,
a 2 = 16 λ 2 + 8 ( k 2 λ ) 2 ,
M= V 1 V 2 = a 2 2 a 1 .

Metrics