Abstract

We report a challenging design, fabrication and post-production characterization problem of a dispersive mirror supporting the spectral range from 2000 nm to 2200 nm and providing a group delay dispersion of −1000 fs2. The absolute reflectance in the working range is over 99.95%. The reported mirror is a critical element for Tm and Ho based lasers and paves the way for the development of ultrafast 2 µm lasers with sub-100 fs pulse duration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
2/3 octave Si/SiO2 infrared dispersive mirrors open new horizons in ultrafast multilayer optics

Vladimir Pervak, Tatiana Amotchkina, Qing Wang, Oleg Pronin, Ka Fai Mak, and Michael Trubetskov
Opt. Express 27(1) 55-62 (2019)

Design, fabrication and application of dispersive mirrors with a SiO2 sculptured layer

Jia Liu, Yanzhi Wang, Ruirui Zhao, Kesheng Guo, Ruiyi Chen, Hongji Qi, Meiping Zhu, Ding Wang, Kui Yi, Yuxin Leng, and Jianda Shao
Opt. Mater. Express 8(4) 836-843 (2018)

Highly-dispersive mirrors reach new levels of dispersion

Elena Fedulova, Kilian Fritsch, Jonathan Brons, Oleg Pronin, Tatiana Amotchkina, Michael Trubetskov, Ferenc Krausz, and Vladimir Pervak
Opt. Express 23(11) 13788-13793 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (J. Wiley, 2004).
  2. F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Tm-based fiber-laser system with more than 200 MW peak power,” Opt. Lett. 40(1), 9–12 (2015).
    [Crossref] [PubMed]
  3. I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
    [Crossref]
  4. H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
    [Crossref]
  5. K. F. Mak, S. Groebmeyer, V. Pervak, F. Krausz, and O. Pronin, “Passively mode locked Ho:YAG oscillator at 2.1 μm,” in EUROPHOTON 2016 (2016), paper PO-3.30.
  6. K. Yang, H. Bromberger, H. Ruf, H. Schäfer, J. Neuhaus, T. Dekorsy, C. V.-B. Grimm, M. Helm, K. Biermann, and H. Künzel, “Passively mode-locked Tm,Ho:YAG laser at 2 microm based on saturable absorption of intersubband transitions in quantum wells,” Opt. Express 18(7), 6537–6544 (2010).
    [Crossref] [PubMed]
  7. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad Continuous-Wave Tuning of Ceramic Cr:ZnSe and Cr:ZnS Lasers,” in Lasers, Sources and Related Photonic Devices (OSA, 2010), paper AMC2.
  8. V. O. Smolski, S. Vasilyev, P. G. Schunemann, S. B. Mirov, and K. L. Vodopyanov, “Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6 μm,” Opt. Lett. 40(12), 2906–2908 (2015).
    [Crossref] [PubMed]
  9. D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, and J. Biegert, “7 μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2 μm,” Optica 3(2), 147 (2016).
    [Crossref]
  10. Y. Chen, Y. Wang, L. Wang, M. Zhu, H. Qi, J. Shao, X. Huang, S. Yang, C. Li, K. Zhou, and Q. Zhu, “High dispersive mirrors for erbium-doped fiber chirped pulse amplification system,” Opt. Express 24(17), 19835–19840 (2016).
    [Crossref] [PubMed]
  11. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [Crossref]
  12. T. Amotchkina, H. Fattahi, Y. A. Pervak, M. Trubetskov, and V. Pervak, “Broadband beamsplitter for high intensity laser applications in the infra-red spectral range,” Opt. Express 24(15), 16752–16759 (2016).
    [Crossref] [PubMed]
  13. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
    [Crossref] [PubMed]
  14. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
  15. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
    [Crossref]
  16. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45(7), 1495–1501 (2006).
    [Crossref] [PubMed]
  17. F. Habel, M. Trubetskov, and V. Pervak, “Group delay dispersion measurements in the mid-infrared spectral range of 2-20 µm,” Opt. Express 24(15), 16705–16710 (2016).
    [Crossref] [PubMed]
  18. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (Taylor & Francis, 2010).
  19. V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50(9), C55–C61 (2011).
    [Crossref] [PubMed]
  20. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19(3), 2371–2380 (2011).
    [Crossref] [PubMed]
  21. A. N. Tikhonov and V. I. Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).
  22. M. Trubetskov, T. Amotchkina, A. Tikhonravov, and V. Pervak, “Reverse engineering of multilayer coatings for ultrafast laser applications,” Appl. Opt. 53(4), A114–A120 (2014).
    [Crossref] [PubMed]
  23. L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20(14), 15734–15751 (2012).
    [Crossref] [PubMed]

2016 (4)

2015 (4)

2014 (1)

2012 (1)

2011 (2)

2010 (1)

2007 (2)

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

2006 (1)

1965 (1)

Amotchkina, T.

Apolonski, A.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Baudisch, M.

Biegert, J.

Biermann, K.

Bromberger, H.

Chalus, O.

Chen, Y.

Cousin, S. L.

DeBell, G. W.

Dekorsy, T.

Ehlers, H.

Fattahi, H.

Gaida, C.

Gao, L.

Gebhardt, M.

Grimm, C. V.-B.

Gross, T.

Habel, F.

Helm, M.

Hemmer, M.

Huang, X.

Jansen, F.

Jauregui, C.

Krausz, F.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Künzel, H.

Lappschies, M.

Lemarchand, F.

Lequime, M.

Li, C.

Limpert, J.

Malitson, I. H.

Mirov, S. B.

Naumov, S.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Neuhaus, J.

Pervak, V.

Pervak, Y. A.

Pires, H.

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Qi, H.

Ristau, D.

Ruf, H.

Sanchez, D.

Schäfer, H.

Schunemann, P.

Schunemann, P. G.

Shao, J.

Simon-Boisson, C.

Smolski, V. O.

Sorokin, E.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

Sorokina, I. T.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

Stutzki, F.

Tikhonravov, A.

Tikhonravov, A. V.

Trubetskov, M.

Trubetskov, M. K.

Tünnermann, A.

Vasilyev, S.

Vodopyanov, K. L.

Wang, L.

Wang, Y.

Yang, K.

Yang, S.

Zawilski, K.

Zhou, K.

Zhu, M.

Zhu, Q.

Appl. Opt. (4)

Appl. Phys. B (1)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (6)

Opt. Lett. (2)

Optica (1)

Prog. Quantum Electron. (1)

H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, and J. Biegert, “Ultrashort pulse generation in the mid-IR,” Prog. Quantum Electron. 43, 1–30 (2015).
[Crossref]

Other (6)

K. F. Mak, S. Groebmeyer, V. Pervak, F. Krausz, and O. Pronin, “Passively mode locked Ho:YAG oscillator at 2.1 μm,” in EUROPHOTON 2016 (2016), paper PO-3.30.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad Continuous-Wave Tuning of Ceramic Cr:ZnSe and Cr:ZnS Lasers,” in Lasers, Sources and Related Photonic Devices (OSA, 2010), paper AMC2.

B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (J. Wiley, 2004).

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (Taylor & Francis, 2010).

A. N. Tikhonov and V. I. Arsenin, Solutions of Ill-Posed Problems (Winston, 1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Thickness profile of the synthesized 54-layer DM, physical thicknesses are shown; (b) Comparison of theoretical and experimental GD/GDD related to DM-Suprasil sample.
Fig. 2
Fig. 2 (a) Comparison of the experimental and theoretical transmittance of the produced DM-Suprasil Sample; (b) Absolute reflectance of DM-Suprasil sample measured by Layertec and theoretical reflectance in the same spectral range.
Fig. 3
Fig. 3 (a) Comparison of the nominal and corrected refractive indices of Ta2O5; refractive index of SiO2 is shown for information only; (b) Input (green) and output (red) pulse simulations. Output pulse is calculated after 10 reflections from the DM at AOI = 5°with subtracted GDD target.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n( λ )= A 0 + A 1 ( λ 0 λ ) 2 + A 2 ( λ 0 λ ) 4 ,
n 2 =1+ B 1 ( λ/ λ 0 ) 2 ( λ/ λ 0 ) 2 B 2 + B 3 ( λ/ λ 0 ) 2 ( λ/ λ 0 ) 2 B 4 + B 5 ( λ/ λ 0 ) 2 ( λ/ λ 0 ) 2 B 6 ,
M F 2 = i=1 801 ( R p ( X, λ i ) Δ 1,j ) 2 + i=1 801 ( GD D p ( X, λ i )+1000 Δ 2,j ) 2 ,
TD F 2 =GD F 2 + α m1 i=1 m1 δ i 2 , GD F 2 = 1 ( m1 )L i=1 m1 j=1 L [ T( X; λ j ) T ^ (i) ( λ j ) ] 2 ,
D F 2 = 1 L i=1 L [ T( X; λ i ) T ^ ( λ i ) ] 2 ,

Metrics