Abstract

Pulse compression technique is a particularly competitive method that enables both high spatial resolution and dynamic range in coherent radar and distributed fiber sensing systems. Up to now, the frequency bandwidths of most pulse compression techniques are restricted to tens of GHz. In this paper, we propose an all-optic sub-THz-range linearly chirped optical source and a large-bandwidth detection system to characterize it. Taking advantage of the chromatic dispersion effect, ultrashort optical pulses are stretched to be ~10 ns linearly chirped pulses with sub-THz range, which yields a large time-bandwidth product of 4500, a high compression ratio of 4167 and a chirp rate of 45 GHz/ns. The generated waveform is characterized with high precision thanks to the large detection bandwidth of linear optical sampling technique. A spatial resolution of 120 μm and an extinction ratio of 20.4 dB is demonstrated by using this technique, which paves the way for ultra-high spatial resolution and long range sensing applications such as LIDAR and optical reflectometry.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio

Hongbiao Gao, Cheng Lei, Minghua Chen, Fangjian Xing, Hongwei Chen, and Shizhong Xie
Opt. Express 21(20) 23107-23115 (2013)

Photonic generation of low phase noise arbitrary chirped microwave waveforms with large time-bandwidth product

Weilin Xie, Zongyang Xia, Qian Zhou, Hongxiao Shi, Yi Dong, and Weisheng Hu
Opt. Express 23(14) 18070-18079 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. C. Farnett and G. H. Stevens, “Pulse Compression Radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 1990).
  2. Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23(20), 25988–25995 (2015).
    [Crossref] [PubMed]
  3. M. A. Richards, Fundamentals of radar signal processing (Tata McGraw-Hill Education, 2005).
  4. R. Tao, N. Zhang, and Y. Wang, “Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar,” IET Radar Sonar & Navigation 5(1), 12–22 (2011).
    [Crossref]
  5. S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Opt. Express 23(26), 33301–33309 (2015).
    [Crossref] [PubMed]
  6. Y. Li, A. Rashidinejad, J.-M. Wun, D. E. Leaird, J.-W. Shi, and A. M. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9 mm range resolution,” Optica 1(6), 446–454 (2014).
    [Crossref]
  7. M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
    [Crossref] [PubMed]
  8. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
    [Crossref]
  9. W. Li and J. Yao, “Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop,” J. Lightwave Technol. 32(20), 3573–3579 (2014).
    [Crossref]
  10. P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24(16), 18460–18467 (2016).
    [Crossref] [PubMed]
  11. Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
    [Crossref] [PubMed]
  12. H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
    [Crossref] [PubMed]
  13. C. Wang and J. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
    [Crossref]
  14. H. Gao, C. Lei, M. Chen, F. Xing, H. Chen, and S. Xie, “A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio,” Opt. Express 21(20), 23107–23115 (2013).
    [Crossref] [PubMed]
  15. R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman, “Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry,” Opt. Express 15(23), 15464–15479 (2007).
    [Crossref] [PubMed]
  16. M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express 18(7), 7184–7189 (2010).
    [Crossref] [PubMed]
  17. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, and P. Winzer, “Measurement of eye diagrams and constellation diagrams of optical sources using linear optics and waveguide technology,” J. Lightwave Technol. 23(1), 178–186 (2005).
    [Crossref]
  18. K. Okamoto and F. Ito, “Dual-channel linear optical sampling for simultaneously monitoring ultrafast intensity and phase modulation,” J. Lightwave Technol. 27(12), 2169–2175 (2009).
    [Crossref]
  19. C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
    [Crossref]
  20. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett. 24(1), 1–3 (1999).
    [Crossref] [PubMed]
  21. F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol. 30(8), 1015–1024 (2012).
    [Crossref]
  22. J. H. Jacobi and L. E. Larsen, “Linear FM pulse compression radar techniques applied to biological imaging,” in Medical Applications of Microwave Imaging (IEEE, 1986).
  23. T. Okamoto, D. Iida, K. Toge, and T. Manabe, “Optical Correlation Domain Reflectometry Based on Coherence Synchronization: Theoretical Analysis and Proof-of-Concept,” J. Lightwave Technol. 34(18), 4259–4265 (2016).
    [Crossref]

2016 (2)

2015 (3)

2014 (2)

2013 (2)

2012 (2)

2011 (1)

R. Tao, N. Zhang, and Y. Wang, “Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar,” IET Radar Sonar & Navigation 5(1), 12–22 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

C. Wang and J. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

2007 (1)

2005 (1)

2003 (1)

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

2000 (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

1999 (1)

Alic, N.

Azaña, J.

Bertero, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Boccacci, P.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Bogoni, A.

Carballar, A.

Chen, H.

Chen, J.

Chen, M.

Conte, F.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Delfyett, P. J.

Doerr, C. R.

Dorrer, C.

Fainman, Y.

Fan, X.

Furutani, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Gao, H.

Ghelfi, P.

Guo, Q.

He, Z.

Iida, D.

Ikeda, K.

Ito, F.

Kang, I.

Kilper, D.

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Koshikiya, Y.

Laghezza, F.

Leaird, D. E.

Lei, C.

Leuthold, J.

Li, W.

Li, Y.

Liu, Q.

Manabe, T.

Mandridis, D.

Miyakawa, M.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Muriel, M. A.

Nguyen, D.

Okamoto, K.

Okamoto, T.

Orikasa, K.

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

Ozdur, I.

Ozharar, S.

Pan, S.

Piracha, M. U.

Rashidinejad, A.

Raybon, G.

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Raymer, M.

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Ryf, R.

Saperstein, R. E.

Scotti, F.

Shi, J.-W.

Slutsky, B.

Stuart, H.

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Tao, R.

R. Tao, N. Zhang, and Y. Wang, “Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar,” IET Radar Sonar & Navigation 5(1), 12–22 (2011).
[Crossref]

Toge, K.

Wang, C.

C. Wang and J. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

Wang, S.

Wang, Y.

R. Tao, N. Zhang, and Y. Wang, “Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar,” IET Radar Sonar & Navigation 5(1), 12–22 (2011).
[Crossref]

Weiner, A. M.

Winzer, P.

Wun, J.-M.

Xie, S.

Xing, F.

Yao, J.

Yilmaz, T.

Zamek, S.

Zhang, F.

Zhang, H.

Zhang, N.

R. Tao, N. Zhang, and Y. Wang, “Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar,” IET Radar Sonar & Navigation 5(1), 12–22 (2011).
[Crossref]

Zhang, Y.

Zhou, P.

Zou, W.

IEEE Photonics Technol. Lett. (2)

C. Wang and J. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photonics Technol. Lett. 20(11), 882–884 (2008).
[Crossref]

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photonics Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng. 47(5), 690–699 (2000).
[Crossref] [PubMed]

IET Radar Sonar & Navigation (1)

R. Tao, N. Zhang, and Y. Wang, “Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar,” IET Radar Sonar & Navigation 5(1), 12–22 (2011).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (6)

Opt. Lett. (3)

Optica (1)

Other (3)

J. H. Jacobi and L. E. Larsen, “Linear FM pulse compression radar techniques applied to biological imaging,” in Medical Applications of Microwave Imaging (IEEE, 1986).

E. C. Farnett and G. H. Stevens, “Pulse Compression Radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 1990).

M. A. Richards, Fundamentals of radar signal processing (Tata McGraw-Hill Education, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental scheme to generate and detect linearly chirped optical signal.
Fig. 2
Fig. 2 Experimental configuration to generate and detect linearly chirped optical signal. FSPL: femtosecond pulsed laser; BFP: optical bandpass filter; PPG: pulse pattern generator; IM: intensity modulator; LCFBG: linearly chirped fiber Bragg grating; CIR: optical circulator; PD: photodetector.
Fig. 3
Fig. 3 Characteristics of lightwave before using dispersion element. (a) Spectrum of the sampling laser (red line), the filtered spectrum of ultrashort pulses for stretching (blue line). (b) Original ultrashort pulses with 2-ps pulse duration.
Fig. 4
Fig. 4 Experimental results. (a) A temporal frame of 10 ns linearly chirped pulse. (b) STFT analysis of the linearly chirped pulse. (c) Calculated autocorrelation of the linearly chirped pulse.
Fig. 5
Fig. 5 (a) Spatial resolution of the FMCW method as a function of target distance. (b) Measured shape of reflection peak by FMCW method at 1 mm, 20 mm and by pulse compression.
Fig. 6
Fig. 6 Experimental results. (a) 20 ns measurement of linearly chirped pulse with phase modulation. (b) STFT analysis of the linearly chirped pulse with phase modulation. (c) Calculated autocorrelation of the 20-ns linearly chirped pulse with phase modulation. (d) Autocorrelation of the 1544-ns time-aperture pulse.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Φ( ω )=Φ+ Φ ω+ 1 2 Φ ω 2 + 1 6 Φ ω 3 .
h( t )exp( j π 2 Φ t 2 ).
E out ( t )= E in ( t )h( t )=Cexp[ j( ω 0 t+ 1 2 Φ t 2 ) ]FFT[ sin( πt / τ p ) πt / τ p ] = C 1 exp[ j( ω 0 t+ 1 2 Φ t 2 ) ]rect( t/T ),
T | 2πcΔλ Φ | λ 0 2 ,B c λ 0 2 Δλ,R= 1 2π Φ ,TBWP 4π c 2 λ 0 4 Φ Δ λ 2 ,
E S ( t )= N ε S ( tN T S )exp( j ω S t ) ,
f sampling =1/ ( T S N/ f pulse ) ,
S( t )= + E out ( t ) E S ( t )R( τt )dt.
S= N exp[ j( ω S ω 0 )N T S ] E ˜ S ( ω ) E out ( N T S ),
S( t )= C E S ( ω )exp( j 1 2 Φ t 2 )rect( t/T ),
h( t )= S ( t )= C E S ( ω )exp( j 1 2 Φ t 2 )rect( t /T ).
C( t )=S( t )h( t )= ( C E S ( ω ) ) 2 rect( t / 2T ) Tsin[ π 2 Φ ( T| t | )t ] π 2 Φ Tt ,
Δz λ 0 2 2nΔλ ,
Γ( t )[ R( t )R( tτ ) ]π t 2 +2tτR( tτ )π τ 2 R( tτ ).

Metrics