Abstract

Donut-shaped laser radiation, carrying orbital angular momentum, namely optical vortex, was recently shown to provide vectorial mass transfer, twisting transiently molten material and producing chiral micro-scale structures on surfaces of different bulk materials upon their resolidification. In this paper, we show that at high-NA focusing nanosecond laser vortices can produce chiral nanoneedles (nanojets) of variable size on thin films of such plasmonic materials, as silver and gold films, covering thermally insulating substrates. Main geometric parameters of the produced chiral nanojets, such as height and aspect ratio, were shown to be tunable in a wide range by varying metal film thickness, supporting substrates, and the optical size of the vortex beam. Donut-shaped vortex nanosecond laser pulses, carrying two vortices with opposite handedness, were demonstrated to produce two chiral nanojets twisted in opposite directions. These results suggest optical interference of the incident and reflected laser beams as a source of complex surface intensity distributions in metal films, possessing spiral components and driving both center-symmetric and spiral thermocapillary melt flows to yield in frozen nanoneedles with their pre-determined spiral nanocarving.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Zero-orbital-angular-momentum laser printing of chiral nanoneedles

S. Syubaev, A. Porfirev, A. Zhizhchenko, O. Vitrik, S. Kudryashov, S. Fomchenkov, S. Khonina, and A. Kuchmizhak
Opt. Lett. 42(23) 5022-5025 (2017)

Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams

Antonino Cala’ Lesina, Pierre Berini, and Lora Ramunno
Opt. Express 25(3) 2569-2582 (2017)

Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing

Qingfeng Li, Anne Patricia Alloncle, David Grojo, and Philippe Delaporte
Opt. Express 25(20) 24164-24172 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. M. Litchinitser, “Structured light meets structured matter,” Science 337(6098), 1054–1055 (2012).
    [Crossref] [PubMed]
  2. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
    [Crossref]
  3. J. Kaschke and M. Wegener, “Optical and infrared helical metamaterials,” Nanophotonics 5(4), 510–523 (2016).
    [Crossref]
  4. G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
    [Crossref]
  5. A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, and A. Ajayaghosh, “Thermally assisted photonic inversion of supramolecular handedness,” Angew. Chem. Int. Ed. Engl. 51(42), 10505–10509 (2012).
    [Crossref] [PubMed]
  6. J. Kumar, T. Nakashima, and T. Kawai, “Circularly polarized luminescence in chiral molecules and supramolecular assemblies,” J. Phys. Chem. Lett. 6(17), 3445–3452 (2015).
    [Crossref] [PubMed]
  7. H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
    [Crossref]
  8. T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
    [Crossref] [PubMed]
  9. J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
    [Crossref] [PubMed]
  10. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [Crossref] [PubMed]
  11. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
    [Crossref] [PubMed]
  12. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
    [Crossref] [PubMed]
  13. A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. 23(36), 4174–4177 (2011).
    [Crossref] [PubMed]
  14. M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 4281 (2014).
    [Crossref] [PubMed]
  15. F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
    [Crossref] [PubMed]
  16. J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
    [Crossref] [PubMed]
  17. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref] [PubMed]
  18. C. Hnatovsky, V. G. Shvedov, N. Shostka, A. V. Rode, and W. Krolikowski, “Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses,” Opt. Lett. 37(2), 226–228 (2012).
    [Crossref] [PubMed]
  19. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
    [Crossref] [PubMed]
  20. D. Baurle, Laser Processing and Chemistry (Springer, 2011).
  21. Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
    [Crossref]
  22. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
    [Crossref] [PubMed]
  23. A. Kuchmizhak, S. Gurbatov, Y. Kulchin, and O. Vitrik, “Fabrication of porous metal nanoparticles and microbumps by means of nanosecond laser pulses focused through the fiber microaxicon,” Opt. Express 22(16), 19149–19155 (2014).
    [Crossref] [PubMed]
  24. J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(3), 635–638 (2009).
    [Crossref]
  25. P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
    [Crossref]
  26. A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
    [Crossref] [PubMed]
  27. A. A. Kuchmizhak, D. V. Pavlov, O. B. Vitrik, and Y. N. Kulchin, “Laser ablative fabrication of nanocrowns and nanojets on the Cu supported film surface using femtosecond laser pulses,” Appl. Surf. Sci. 357, 2378–2384 (2015).
    [Crossref]
  28. M. Beresna, M. Gecevičius, P. G. Kazansk, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
    [Crossref]
  29. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref] [PubMed]
  30. M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  31. M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
    [Crossref]
  32. A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
    [Crossref]
  33. J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” arXiv:1608.01220 (2016).
  34. N. V. Petrov, P. V. Pavlov, and A. N. Malov, “Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory,” Quantum Electron. 43(6), 582–587 (2013).
    [Crossref]
  35. A. Y. Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. At. Mol. Opt. Phys. 41(10), 101001 (2008).
    [Crossref]
  36. Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 82(2), 363–368 (2006).
    [Crossref]

2016 (4)

J. Kaschke and M. Wegener, “Optical and infrared helical metamaterials,” Nanophotonics 5(4), 510–523 (2016).
[Crossref]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

2015 (7)

A. A. Kuchmizhak, D. V. Pavlov, O. B. Vitrik, and Y. N. Kulchin, “Laser ablative fabrication of nanocrowns and nanojets on the Cu supported film surface using femtosecond laser pulses,” Appl. Surf. Sci. 357, 2378–2384 (2015).
[Crossref]

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

J. Kumar, T. Nakashima, and T. Kawai, “Circularly polarized luminescence in chiral molecules and supramolecular assemblies,” J. Phys. Chem. Lett. 6(17), 3445–3452 (2015).
[Crossref] [PubMed]

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

2014 (4)

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

A. Kuchmizhak, S. Gurbatov, Y. Kulchin, and O. Vitrik, “Fabrication of porous metal nanoparticles and microbumps by means of nanosecond laser pulses focused through the fiber microaxicon,” Opt. Express 22(16), 19149–19155 (2014).
[Crossref] [PubMed]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 4281 (2014).
[Crossref] [PubMed]

2013 (3)

N. V. Petrov, P. V. Pavlov, and A. N. Malov, “Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory,” Quantum Electron. 43(6), 582–587 (2013).
[Crossref]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

2012 (7)

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

C. Hnatovsky, V. G. Shvedov, N. Shostka, A. V. Rode, and W. Krolikowski, “Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses,” Opt. Lett. 37(2), 226–228 (2012).
[Crossref] [PubMed]

T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

N. M. Litchinitser, “Structured light meets structured matter,” Science 337(6098), 1054–1055 (2012).
[Crossref] [PubMed]

A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, and A. Ajayaghosh, “Thermally assisted photonic inversion of supramolecular handedness,” Angew. Chem. Int. Ed. Engl. 51(42), 10505–10509 (2012).
[Crossref] [PubMed]

2011 (4)

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. 23(36), 4174–4177 (2011).
[Crossref] [PubMed]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansk, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

2010 (1)

2009 (1)

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(3), 635–638 (2009).
[Crossref]

2008 (1)

A. Y. Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. At. Mol. Opt. Phys. 41(10), 101001 (2008).
[Crossref]

2006 (1)

Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 82(2), 363–368 (2006).
[Crossref]

1982 (1)

Ajayaghosh, A.

A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, and A. Ajayaghosh, “Thermally assisted photonic inversion of supramolecular handedness,” Angew. Chem. Int. Ed. Engl. 51(42), 10505–10509 (2012).
[Crossref] [PubMed]

Ambrosio, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Amoruso, S.

Anoop, K. K.

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Bahng, J. H.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Beresna, M.

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansk, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Borbone, F.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Bruzzese, R.

Bulgakova, N. M.

Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 82(2), 363–368 (2006).
[Crossref]

Chan, H.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Chang, S.-J.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Chang, W.-S.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Cheng, J.

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

Chichkov, B. N.

Chujo, K.

Chuvilin, A.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Danilov, P. A.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

Dominguez-Medina, S.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Drevinskas, R.

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

Fittipaldi, R.

Furumi, S.

A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, and A. Ajayaghosh, “Thermally assisted photonic inversion of supramolecular handedness,” Angew. Chem. Int. Ed. Engl. 51(42), 10505–10509 (2012).
[Crossref] [PubMed]

Gecevicius, M.

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansk, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Georgiev, D. G.

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(3), 635–638 (2009).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansk, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Gopal, A.

A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, and A. Ajayaghosh, “Thermally assisted photonic inversion of supramolecular handedness,” Angew. Chem. Int. Ed. Engl. 51(42), 10505–10509 (2012).
[Crossref] [PubMed]

Gurbatov, S.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

A. Kuchmizhak, S. Gurbatov, Y. Kulchin, and O. Vitrik, “Fabrication of porous metal nanoparticles and microbumps by means of nanosecond laser pulses focused through the fiber microaxicon,” Opt. Express 22(16), 19149–19155 (2014).
[Crossref] [PubMed]

Haino, T.

T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
[Crossref] [PubMed]

Hidai, H.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

Hifsudheen, M.

A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, and A. Ajayaghosh, “Thermally assisted photonic inversion of supramolecular handedness,” Angew. Chem. Int. Ed. Engl. 51(42), 10505–10509 (2012).
[Crossref] [PubMed]

Hirao, T.

T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
[Crossref] [PubMed]

Hiromoto, T.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

Hnatovsky, C.

Ikeda, T.

T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
[Crossref] [PubMed]

Ionin, A.

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

Ionin, A. A.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

Juman, G.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 4281 (2014).
[Crossref] [PubMed]

Kaivola, M.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. 23(36), 4174–4177 (2011).
[Crossref] [PubMed]

Kaschke, J.

J. Kaschke and M. Wegener, “Optical and infrared helical metamaterials,” Nanophotonics 5(4), 510–523 (2016).
[Crossref]

Kawai, T.

J. Kumar, T. Nakashima, and T. Kawai, “Circularly polarized luminescence in chiral molecules and supramolecular assemblies,” J. Phys. Chem. Lett. 6(17), 3445–3452 (2015).
[Crossref] [PubMed]

T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
[Crossref] [PubMed]

Kazansk, P. G.

M. Beresna, M. Gecevičius, P. G. Kazansk, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

Kazansky, P. G.

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

Koch, J.

Kotov, N. A.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Král, P.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Kravchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. 23(36), 4174–4177 (2011).
[Crossref] [PubMed]

Krolikowski, W.

Kuchmizhak, A.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

A. Kuchmizhak, S. Gurbatov, Y. Kulchin, and O. Vitrik, “Fabrication of porous metal nanoparticles and microbumps by means of nanosecond laser pulses focused through the fiber microaxicon,” Opt. Express 22(16), 19149–19155 (2014).
[Crossref] [PubMed]

Kuchmizhak, A. A.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

A. A. Kuchmizhak, D. V. Pavlov, O. B. Vitrik, and Y. N. Kulchin, “Laser ablative fabrication of nanocrowns and nanojets on the Cu supported film surface using femtosecond laser pulses,” Appl. Surf. Sci. 357, 2378–2384 (2015).
[Crossref]

Kudryashov, S.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

Kudryashov, S. I.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

Kulchin, Y.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

A. Kuchmizhak, S. Gurbatov, Y. Kulchin, and O. Vitrik, “Fabrication of porous metal nanoparticles and microbumps by means of nanosecond laser pulses focused through the fiber microaxicon,” Opt. Express 22(16), 19149–19155 (2014).
[Crossref] [PubMed]

Kulchin, Y. N.

A. A. Kuchmizhak, D. V. Pavlov, O. B. Vitrik, and Y. N. Kulchin, “Laser ablative fabrication of nanocrowns and nanojets on the Cu supported film surface using femtosecond laser pulses,” Appl. Surf. Sci. 357, 2378–2384 (2015).
[Crossref]

Kulchin, Yu. N.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

Kumar, J.

J. Kumar, T. Nakashima, and T. Kawai, “Circularly polarized luminescence in chiral molecules and supramolecular assemblies,” J. Phys. Chem. Lett. 6(17), 3445–3452 (2015).
[Crossref] [PubMed]

Lam, J. W. Y.

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

Li, B. S.

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

Li, H.

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

Link, S.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Litchinitser, N. M.

N. M. Litchinitser, “Structured light meets structured matter,” Science 337(6098), 1054–1055 (2012).
[Crossref] [PubMed]

Liu, J. M.

Maddalena, P.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Makarov, S.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

Malov, A. N.

N. V. Petrov, P. V. Pavlov, and A. N. Malov, “Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory,” Quantum Electron. 43(6), 582–587 (2013).
[Crossref]

Marrucci, L.

J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, and S. Amoruso, “Laser ablation of silicon induced by a femtosecond optical vortex beam,” Opt. Lett. 40(20), 4611–4614 (2015).
[Crossref] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Masuda, T.

T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
[Crossref] [PubMed]

Mayor, A.

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

Melnikau, D.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Meshcheryakov, Y. P.

Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 82(2), 363–368 (2006).
[Crossref]

Milichko, V.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

Miyamoto, K.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 4281 (2014).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Miyanaga, N.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

Moening, J. P.

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(3), 635–638 (2009).
[Crossref]

Momoo, K.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

Morita, R.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Nakamura, K.

Nakashima, T.

J. Kumar, T. Nakashima, and T. Kawai, “Circularly polarized luminescence in chiral molecules and supramolecular assemblies,” J. Phys. Chem. Lett. 6(17), 3445–3452 (2015).
[Crossref] [PubMed]

Nakata, Y.

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

Nepomniaschiy, A.

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

Nguyen, T. T. H.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

Nivas, J. J.

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Okida, M.

Okulov, A. Y.

A. Y. Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. At. Mol. Opt. Phys. 41(10), 101001 (2008).
[Crossref]

Omatsu, T.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 4281 (2014).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010).
[Crossref] [PubMed]

Ovchinnikov, V.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. 23(36), 4174–4177 (2011).
[Crossref] [PubMed]

Overmeyer, L.

Paparo, D.

Pavlov, D. V.

A. A. Kuchmizhak, D. V. Pavlov, O. B. Vitrik, and Y. N. Kulchin, “Laser ablative fabrication of nanocrowns and nanojets on the Cu supported film surface using femtosecond laser pulses,” Appl. Surf. Sci. 357, 2378–2384 (2015).
[Crossref]

Pavlov, P. V.

N. V. Petrov, P. V. Pavlov, and A. N. Malov, “Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory,” Quantum Electron. 43(6), 582–587 (2013).
[Crossref]

Petrov, N. V.

N. V. Petrov, P. V. Pavlov, and A. N. Malov, “Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory,” Quantum Electron. 43(6), 582–587 (2013).
[Crossref]

Priimagi, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. 23(36), 4174–4177 (2011).
[Crossref] [PubMed]

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Rode, A. V.

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Rogach, A. L.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Roviello, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Rubano, A.

Rudenko, A.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

Rui, G.

G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
[Crossref]

Saraeva, I. N.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

Shevchenko, A.

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. 23(36), 4174–4177 (2011).
[Crossref] [PubMed]

Shostka, N.

Shutong, H.

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Shvedov, V. G.

Smith, K. W.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Takahashi, F.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Takeuchi, M.

A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, and A. Ajayaghosh, “Thermally assisted photonic inversion of supramolecular handedness,” Angew. Chem. Int. Ed. Engl. 51(42), 10505–10509 (2012).
[Crossref] [PubMed]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tang, B. Z.

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

Thanawala, S. S.

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(3), 635–638 (2009).
[Crossref]

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Tsumatori, H.

T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
[Crossref] [PubMed]

Unger, C.

Vecchione, A.

Vitrik, O.

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

A. Kuchmizhak, S. Gurbatov, Y. Kulchin, and O. Vitrik, “Fabrication of porous metal nanoparticles and microbumps by means of nanosecond laser pulses focused through the fiber microaxicon,” Opt. Express 22(16), 19149–19155 (2014).
[Crossref] [PubMed]

Vitrik, O. B.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

A. A. Kuchmizhak, D. V. Pavlov, O. B. Vitrik, and Y. N. Kulchin, “Laser ablative fabrication of nanocrowns and nanojets on the Cu supported film surface using femtosecond laser pulses,” Appl. Surf. Sci. 357, 2378–2384 (2015).
[Crossref]

Watabe, M.

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 4281 (2014).
[Crossref] [PubMed]

Wegener, M.

J. Kaschke and M. Wegener, “Optical and infrared helical metamaterials,” Nanophotonics 5(4), 510–523 (2016).
[Crossref]

Wong, K. S.

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

Wu, H.

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

Yamane, K.

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

Yeom, B.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Yeom, J.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Yuasa, J.

T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
[Crossref] [PubMed]

Zayarny, D. A.

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Zhan, Q.

G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
[Crossref]

Zhang, P.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Zhao, G.

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Zhao, Y.

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

Adv. Mater. (1)

A. Kravchenko, A. Shevchenko, V. Ovchinnikov, A. Priimagi, and M. Kaivola, “Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon,” Adv. Mater. 23(36), 4174–4177 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. Gopal, M. Hifsudheen, S. Furumi, M. Takeuchi, and A. Ajayaghosh, “Thermally assisted photonic inversion of supramolecular handedness,” Angew. Chem. Int. Ed. Engl. 51(42), 10505–10509 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. Beresna, M. Gecevičius, P. G. Kazansk, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 201101 (2011).
[Crossref]

M. Gecevicius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104(23), 231110 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 82(2), 363–368 (2006).
[Crossref]

J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(3), 635–638 (2009).
[Crossref]

Appl. Surf. Sci. (3)

A. Kuchmizhak, S. Gurbatov, A. Nepomniaschiy, A. Mayor, Y. Kulchin, O. Vitrik, S. Makarov, S. Kudryashov, and A. Ionin, “Hydrodynamic instabilities of thin Au/Pd alloy film induced by tightly focused femtosecond laser pulses,” Appl. Surf. Sci. 337, 224–229 (2015).
[Crossref]

Y. Nakata, N. Miyanaga, K. Momoo, and T. Hiromoto, “Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation,” Appl. Surf. Sci. 274, 27–32 (2013).
[Crossref]

A. A. Kuchmizhak, D. V. Pavlov, O. B. Vitrik, and Y. N. Kulchin, “Laser ablative fabrication of nanocrowns and nanojets on the Cu supported film surface using femtosecond laser pulses,” Appl. Surf. Sci. 357, 2378–2384 (2015).
[Crossref]

Chem. Commun. (Camb.) (1)

T. Ikeda, T. Masuda, T. Hirao, J. Yuasa, H. Tsumatori, T. Kawai, and T. Haino, “Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety,” Chem. Commun. (Camb.) 48(48), 6025–6027 (2012).
[Crossref] [PubMed]

J. Phys. At. Mol. Opt. Phys. (1)

A. Y. Okulov, “Angular momentum of photons and phase conjugation,” J. Phys. At. Mol. Opt. Phys. 41(10), 101001 (2008).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Kumar, T. Nakashima, and T. Kawai, “Circularly polarized luminescence in chiral molecules and supramolecular assemblies,” J. Phys. Chem. Lett. 6(17), 3445–3452 (2015).
[Crossref] [PubMed]

JETP Lett. (1)

P. A. Danilov, D. A. Zayarny, A. A. Ionin, S. I. Kudryashov, T. T. H. Nguyen, A. Rudenko, I. N. Saraeva, A. A. Kuchmizhak, O. B. Vitrik, and Yu. N. Kulchin, “Structure and laser-fabrication mechanisms of microcones on silver films of variable thickness,” JETP Lett. 103(8), 549–552 (2016).
[Crossref]

Mater. Horiz. (1)

H. Li, J. Cheng, Y. Zhao, J. W. Y. Lam, K. S. Wong, H. Wu, B. S. Li, and B. Z. Tang, “L-Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly,” Mater. Horiz. 1(5), 518–521 (2014).
[Crossref]

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Nanophotonics (2)

J. Kaschke and M. Wegener, “Optical and infrared helical metamaterials,” Nanophotonics 5(4), 510–523 (2016).
[Crossref]

G. Rui and Q. Zhan, “Tailoring optical complex fields with nano-metallic surfaces,” Nanophotonics 4(1), 2–25 (2015).
[Crossref]

Nat. Commun. (1)

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat. Commun. 3, 989 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, and N. A. Kotov, “Chiral templating of self-assembling nanostructures by circularly polarized light,” Nat. Mater. 14(1), 66–72 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9(12), 796–808 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106(12), 123901 (2011).
[Crossref] [PubMed]

Quantum Electron. (1)

N. V. Petrov, P. V. Pavlov, and A. N. Malov, “Numerical simulation of optical vortex propagation and reflection by the methods of scalar diffraction theory,” Quantum Electron. 43(6), 582–587 (2013).
[Crossref]

Sci. Rep. (3)

A. Kuchmizhak, S. Gurbatov, O. Vitrik, Y. Kulchin, V. Milichko, S. Makarov, and S. Kudryashov, “Ion-beam assisted laser fabrication of sensing plasmonic nanostructures,” Sci. Rep. 6(1), 19410 (2016).
[Crossref] [PubMed]

M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “Light induced conch-shaped relief in an azo-polymer film,” Sci. Rep. 4, 4281 (2014).
[Crossref] [PubMed]

F. Takahashi, K. Miyamoto, H. Hidai, K. Yamane, R. Morita, and T. Omatsu, “Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle,” Sci. Rep. 6(1), 21738 (2016).
[Crossref] [PubMed]

Science (1)

N. M. Litchinitser, “Structured light meets structured matter,” Science 337(6098), 1054–1055 (2012).
[Crossref] [PubMed]

Other (2)

D. Baurle, Laser Processing and Chemistry (Springer, 2011).

J. Ni, C. Wang, C. Zhang, Y. Hu, L. Yang, Z. Lao, and J. Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” arXiv:1608.01220 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (A) Schematic of the experimental setup for nanostructuring with the nanosecond vortex beams. (B) Vortex-beam intensity distributions measured in the focal plane of the microscope objectives with NA = 0.3 (top), NA = 0.45 (middle) and NA = 0.65 (bottom). (C) Sketch schematically showing the formation process of twisted Ag nanojets under vortex pulse ablation. Right-most side-view SEM image shows twisted nanojet with the red arrows indicating the rotation direction. (D,E) Normal-view SEM images of twisted Ag nanojets produced under single-pulse ablation of 500-nm thick Ag film with ns vortex pulses having opposite signs of vortex helicity.
Fig. 2
Fig. 2 (A-D) Side-view (view angle of 40°) and normal-view (in false color) SEM image pairs of twisted Ag nanojets produced under single-pulse ablation of 500-nm thick Ag film with the vortex pulses focused at NA = 0.3. Similar side-view (view angle of 40°) SEM images showing twisted nanojets fabricated on the surface of the same Ag film with single vortices focused with microscope objective at NA = 0.45 (E-H) and NA = 0.65 (I-L). The pulse energy in each image row increases from left to right. Insets in figures (C) and (L) show the magnified view of the nanojet tip indicating the typical curvature radii smaller than 12 nm.
Fig. 3
Fig. 3 (A-D) Averaged thickness- and NA-dependent width w (A), base diameter D (B), height H (C) and aspect ratio A, of the chiral nanojets produced under single-pulse ablation of the 500- and 100-nm thick Ag films, covering the silica glass (orange and grey circles, respectively) and PMMA (green circles) substrates. (E) Diameter of the damaged area on the surface of the 500-nm Ag film versus NA. (F-H) Side-view (view angle of 40°) and top-view (in false color) SEM image pairs of the twisted nanojets produced under vortex-pulse ablation of the 100-nm thick Ag film, covering the silica glass (F-H) and PMMA (I-L) substrates. The pulse energy in each image row increases from left to right. The vortex pulses were focused by the 0.65-NA objective. Inset in the figure (H) shows the magnified view of the nanojet tip.
Fig. 4
Fig. 4 Fringe patterns of the interfering plane wave and its donut-shaped replica generated by S-waveplate for the elliptical (A) and circular (B) polarizations. The circles indicate the phase discontinuities. (C) Side-view (view angle of 40°) SEM images of doubled twisted Ag nanojets produced under single-pulse ablation of 500-nm thick Ag film with donut-shaped pulses carrying two vortices with the opposite signs of vortex helicity. (D) Top-view SEM image of similar double-jet structure with the magnified images of both nanojets given in the insets. The vortex pulses were focused by the 0.3-NA objective. (E) Top-view high-resolution SEM image, showing the package of nanocrystallites within the single chiral nanojet. Several nanocrystallites were marked by false colors to highlight the nanocrystallite “bending” effect (red-colored crystallite) in the area affected by distinct helical thermocapillary flows and central-symmetric arrangement of crystallites (blue colored) outside this area.
Fig. 5
Fig. 5 Intensity distributions of the incident focused first-order vortex beam (left), distorted beam reflected from the rough metal surface (middle) and their interference pattern (right). The white arrows in the right-most image indicate the direction of the intensity gradient, which leads to the appearance of a “thermal spiral”.

Metrics