Abstract

We report the generation mechanism associated with nano-grating electrode photomixers fabricated on Fe-doped InGaAsP substrates. Two different emitter designs incorporating nano-gratings coupled to the same broadband antenna were characterized in a continuous-wave terahertz (THz) frequency system employing telecommunications wavelength lasers for generation and coherent detection. The current-voltage characteristics and THz emission bandwidth of the emitters is compared for different bias polarities and optical polarisations. The THz output from the emitters is also mapped as a function of the position of the laser excitation spot for both continuous-wave and pulsed excitation. This mapping, together with full-wave simulations of the structures, confirms the generation mechanism to be due to an enhanced optical electric field at the grating tips resulting in increased optical absorption, coinciding with a concentration of the electrostatic field.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing THz generation in photomixers using a metamaterial approach

Daniel J. Ironside, Rodolfo Salas, Pai-Yen Chen, Khai Q. Le, Andrea Alú, and Seth R. Bank
Opt. Express 27(7) 9481-9494 (2019)

Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer

Namje Kim, Sang-Pil Han, Hyunsung Ko, Young Ahn Leem, Han-Cheol Ryu, Chul Wook Lee, Donghun Lee, Min Yong Jeon, Sam Kyu Noh, and Kyung Hyun Park
Opt. Express 19(16) 15397-15403 (2011)

Bias-free and antenna-coupled CW terahertz array emitter with anomalous Schottky barriers

Mohammad Javad Mohammad-Zamani, Morteza Fathipour, Mohammad Neshat, Fakhroddin Nazari, and Mahdi Ghaemi
J. Opt. Soc. Am. B 34(9) 1771-1779 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
    [Crossref] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  4. T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
    [Crossref]
  5. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  6. N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
    [Crossref]
  7. S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
    [Crossref]
  8. E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
    [Crossref]
  9. I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
    [Crossref]
  10. N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
    [Crossref]
  11. S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [Crossref]
  12. S. Verghese, K. A. McIntosh, S. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
    [Crossref]
  13. S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
    [Crossref]
  14. E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
    [Crossref]
  15. S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
    [Crossref]
  16. J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
    [Crossref]
  17. R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
    [Crossref]
  18. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref] [PubMed]
  19. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
    [Crossref]
  20. S. H. Yang, R. Watts, X. Li, N. Wang, V. Cojocaru, J. O’Gorman, L. P. Barry, and M. Jarrahi, “Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer,” Opt. Express 23(24), 31206–31215 (2015).
    [Crossref] [PubMed]
  21. S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers,” Appl. Phys. Lett. 107(13), 131111 (2015).
    [Crossref]
  22. H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
    [Crossref] [PubMed]
  23. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
    [Crossref]
  24. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
    [Crossref]
  25. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076–2078 (1997).
    [Crossref]
  26. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
    [Crossref] [PubMed]
  27. O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
    [Crossref]
  28. H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs / InP determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
    [Crossref]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2016 (3)

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
[Crossref]

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

2015 (2)

2014 (3)

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

2013 (2)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

2012 (2)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

2011 (1)

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

2007 (3)

J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

2005 (2)

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

2004 (1)

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

2003 (1)

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

2001 (1)

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

1998 (1)

S. Verghese, K. A. McIntosh, S. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
[Crossref]

1997 (2)

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076–2078 (1997).
[Crossref]

1994 (1)

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
[Crossref]

1993 (1)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

1992 (1)

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs / InP determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alfaro, M.

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
[Crossref]

Baker, C.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

Barry, L. P.

Bartalini, S.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Bartolini, P.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Beere, H.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Berry, C. W.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Blary, K.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Bradley, I. V.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

Brener, I.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076–2078 (1997).
[Crossref]

Brown, E. R.

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

Burkhard, H.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs / InP determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Burton Lewis, R.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Cai, Y.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076–2078 (1997).
[Crossref]

Calawa, S.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
[Crossref]

Calligaro, M.

J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
[Crossref] [PubMed]

Cancio, P.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Cannard, P. J.

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Castro-Camus, E.

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
[Crossref]

Chen, Z. N.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Chowdhury, S.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chua, S. J.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Chum, C. C.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Cojocaru, V.

Cole, B. E.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

Consolino, L.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Crozat, P.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Cunningham, J. E.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

Danner, A. J.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Darcie, T. E.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Darmo, J.

J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
[Crossref] [PubMed]

Davies, A. G.

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

De Natale, P.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

De Pas, M.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Dean, P.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
[Crossref]

Dhillon, S. S.

J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
[Crossref] [PubMed]

DiNatale, W. F.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
[Crossref]

Dinges, H. W.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs / InP determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Dohler, G. H.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Duerr, E. K.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
[Crossref]

Duffy, S. M.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

Evans, M. J.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

Federici, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076–2078 (1997).
[Crossref]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fice, M.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Freeman, J. R.

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Gordon, R.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Gossard, A. C.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

Gregory, I. S.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

Hashemi, M. R.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Hatem, O.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

Heshmat, B.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Hwang, J.-S.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Inoue, H.

Itsuji, T.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

Jackson, A.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

Jarrahi, M.

S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers,” Appl. Phys. Lett. 107(13), 131111 (2015).
[Crossref]

S. H. Yang, R. Watts, X. Li, N. Wang, V. Cojocaru, J. O’Gorman, L. P. Barry, and M. Jarrahi, “Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer,” Opt. Express 23(24), 31206–31215 (2015).
[Crossref] [PubMed]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kajiki, K.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

Karpowicz, N.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Kawase, K.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref] [PubMed]

Koizumi, T.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

Koyama, Y.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

Kröll, J.

J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
[Crossref] [PubMed]

Kubota, O.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

Lampin, J. F.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Li, X.

Lin, K.-I.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Linfield, E. H.

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

Lopata, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076–2078 (1997).
[Crossref]

Lösch, R.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs / InP determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Lu, H.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

Maier, S. A.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Malzer, S.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Manfra, M. J.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
[Crossref]

Mangeney, J.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Marcadet, X.

J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
[Crossref] [PubMed]

Masnadi-Shirazi, M.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Matsuura, S.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

Mattia, J. P.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
[Crossref]

McIntosh, K. A.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

S. Verghese, K. A. McIntosh, S. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

Merigault, A.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Missous, M.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

Mohandas, R. A.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Molvar, K. A.

S. Verghese, K. A. McIntosh, S. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
[Crossref]

Moodie, D. G.

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Nichols, K. B.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
[Crossref]

Nickel, H.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs / InP determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

O’Gorman, J.

Ogawa, Y.

Ouchi, T.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

Pahlevaninezhad, H.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Pang, Y.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Pfeiffer, L.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076–2078 (1997).
[Crossref]

Ponnampalam, L.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Preu, S.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Ritchie, D.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Robertson, M. J.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

Rosamond, M. C.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Schlapp, W.

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs / InP determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Seeds, A. J.

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

Sekiguchi, R.

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

Si, G. Y.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Sirtori, C.

J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
[Crossref] [PubMed]

Smith, F. W.

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

Sun, M.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Tanoto, H.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Taschin, A.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Teng, J. H.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Tiedje, T.

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Torre, R.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Tribe, W. R.

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Unterrainer, K.

J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
[Crossref] [PubMed]

Verghese, S.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

S. Verghese, K. A. McIntosh, S. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
[Crossref]

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

Vitiello, M. S.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Wang, B.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Wang, L. J.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Wang, N.

S. H. Yang, R. Watts, X. Li, N. Wang, V. Cojocaru, J. O’Gorman, L. P. Barry, and M. Jarrahi, “Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer,” Opt. Express 23(24), 31206–31215 (2015).
[Crossref] [PubMed]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Watanabe, Y.

Watts, R.

Wu, Q. Y.

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Wynn, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076–2078 (1997).
[Crossref]

Xu, J.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Yang, S. H.

Yang, S.-H.

S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers,” Appl. Phys. Lett. 107(13), 131111 (2015).
[Crossref]

Zerounian, N.

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

Zhang, C.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Zhang, X. C.

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Zhang, X.-C.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhong, H.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

Appl. Phys. Lett. (7)

N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X. C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86(5), 054105 (2005).
[Crossref]

S. Verghese, K. A. McIntosh, S. Calawa, W. F. DiNatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73(26), 3824–3826 (1998).
[Crossref]

E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64(24), 3311–3313 (1994).
[Crossref]

J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, “Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths,” Appl. Phys. Lett. 91(24), 241102 (2007).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S.-H. Yang and M. Jarrahi, “Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers,” Appl. Phys. Lett. 107(13), 131111 (2015).
[Crossref]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076–2078 (1997).
[Crossref]

Appl. Surf. Sci. (1)

H. W. Dinges, H. Burkhard, R. Lösch, H. Nickel, and W. Schlapp, “Refractive indices of InAlAs and InGaAs / InP determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 54, 477–481 (1992).
[Crossref]

Electron. Lett. (1)

I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40(2), 143–145 (2004).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

S. Verghese, K. A. McIntosh, and E. R. Brown, “Highly tunable fiber-coupled photomixers with coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 45(8), 1301–1309 (1997).
[Crossref]

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[Crossref]

J. Appl. Phys. (3)

R. A. Mohandas, J. R. Freeman, M. C. Rosamond, O. Hatem, S. Chowdhury, L. Ponnampalam, M. Fice, A. J. Seeds, P. J. Cannard, M. J. Robertson, D. G. Moodie, J. E. Cunningham, A. G. Davies, E. H. Linfield, and P. Dean, “Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP,” J. Appl. Phys. 119(15), 153103 (2016).
[Crossref]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

J. Infrared Millim. Terahertz Waves (2)

O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies, and D. G. Moodie, “Generation of Terahertz Radiation from Fe-doped InGaAsP Using 800 nm to 1550 nm Pulsed Laser Excitation,” J. Infrared Millim. Terahertz Waves 37(5), 415–425 (2016).
[Crossref]

T. Ouchi, K. Kajiki, T. Koizumi, T. Itsuji, Y. Koyama, R. Sekiguchi, O. Kubota, and K. Kawase, “Terahertz imaging system for medical applications and related high efficiency terahertz devices,” J. Infrared Millim. Terahertz Waves 35(1), 118–130 (2014).
[Crossref]

Nano Lett. (1)

B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. Burton Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, “Nanoplasmonic terahertz photoconductive switch on GaAs,” Nano Lett. 12(12), 6255–6259 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (1)

J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Opt. Express (2)

Photonics Res. (1)

E. Castro-Camus and M. Alfaro, “Photoconductive devices for terahertz pulsed spectroscopy: a review [Invited],” Photonics Res. 4(3), A36–A42 (2016).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. X (1)

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4(2), 021006 (2014).
[Crossref]

Sci. Rep. (1)

H. Tanoto, J. H. Teng, Q. Y. Wu, M. Sun, Z. N. Chen, S. A. Maier, B. Wang, C. C. Chum, G. Y. Si, A. J. Danner, and S. J. Chua, “Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission,” Sci. Rep. 3, 2824 (2013).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic layout of the active region of the (a) SSNG and (b) DSNG design with the dimensions of the active region, NG and gap marked. (c) SEM image of the fabricated DSNG design, shown together with a magnified section showing the dimensions of the active region.
Fig. 2
Fig. 2 Schematic diagram showing the experimental arrangement used for emitter characterization.
Fig. 3
Fig. 3 (a) Photocurrent measurement from the DSNG and SSNG emitters as a function of DC bias at an incident optical power of 10 mW. (b) THz amplitude as a function of laser beat frequency from the two different designs, SSNG (top) and DSNG (bottom), at different bias orientations. For the SSNG, black and grey curves represent the bandwidth scan performed when the NG and plane metal electrode was biased, respectively. For the DSNG, red and purple curve represents the same measurements with the NG1 and NG2 biased, respectively.
Fig. 4
Fig. 4 Raster scanned images showing the THz amplitude as a function of the laser exciting position for the SSNG and DSNG emitters at 510 GHz. In each case, the appropriate electrode is biased at 1 V, with a 25% duty cycle at 7.6 kHz. An image of the two-turn log-spiral antenna design is overlayed on the data to aid understanding. The SSNG design with (a) the NG biased and (b) the plane metal electrode biased. The DSNG design with (c) the first NG biased and (d) the second NG biased. The polarization direction of the incident laser is shown in the top right corner of each image.
Fig. 5
Fig. 5 Raster scanned images showing the THz amplitude as a function of the laser exciting position for the SSNG and DSNG emitter design, for two orthogonal incident laser polarizations at 510 GHz. In each case, the appropriate electrode is biased at 1 V, with a 25% duty cycle at 7.6 kHz. An image of the two-turn log-spiral antenna design is overlayed on the data to aid understanding. The SSNG design with (a) horizontal and (b) vertical polarizations; the DSNG design with (c) horizontal and (d) vertical polarizations.
Fig. 6
Fig. 6 Raster scanned images showing the peak THz amplitude as a function of excitation position for (a) the SSNG, and (b) the DSNG emitter design, respectively, obtained through THz time-domain spectroscopy. In each case, the appropriate electrode is biased at 1 V, with a 25% duty cycle at 7.6 kHz. An image of the two-turn log-spiral antenna design is overlayed on the data to aid understanding. The spotsize is larger compared to the CW mapping measurements owing to the chromatic aberration of the lens. (c) Measured THz time domain waveforms for different laser excitation positions. Inset shows the corresponding to the laser excitation positions
Fig. 7
Fig. 7 Results for full-wave simulations of DSNG and SSNG devices. (a) Diagram of 3-dimentional model showing the SSNG device with electrodes in yellow and semiconductor layer in blue. (b) Top view and corresponding cross-section of the calculated electrostatic field magnitude for SSNG device, showing electric field 25 nm below the gold electrodes surface. (c)-(f) Top-views and corresponding cross-sections of absorption power density in the semiconductor material 25 nm below the gold electrodes. The cross-sections are taken along the edge of the central grating bar. (c) SSNG device, spot focused in the gap, (d) DSNG device, focused on tips, (e) DSNG device, focused in gap, (f) DSNG device focused on grating.

Metrics