Abstract

Hyper-entangled photon pairs are very promising in the quantum information field for enhancing the channel capacity in communication and improving compatibility for networks. Here we report on the experimental generation of a hyper-entangled photon pair at a wavelength of 795 nm and 1475 nm via the spontaneous four-wave mixing process in a cold 85Rb atomic ensemble. The photons in each pair generated are entangled in both the time-frequency and polarization degrees of freedom. Such hyper-entangled photon pairs with special wavelength have potential applications in high-dimensional quantum communication and quantum physics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient generation of hyperentangled photon pairs with controllable waveforms from cold atoms

Hui Yan and Shi-liang Zhu
J. Opt. Soc. Am. B 30(2) 362-365 (2013)

Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment

Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, Xu-Bo Zou, and Guang-Can Guo
Opt. Express 20(10) 11433-11444 (2012)

Generation of polarization-entangled photon pairs in a Bragg reflection waveguide

A. Vallés, M. Hendrych, J. Svozilík, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres
Opt. Express 21(9) 10841-10849 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
    [Crossref] [PubMed]
  2. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
    [Crossref]
  3. J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
    [Crossref] [PubMed]
  4. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [Crossref] [PubMed]
  5. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
    [Crossref] [PubMed]
  6. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
    [Crossref] [PubMed]
  7. W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
    [Crossref] [PubMed]
  8. Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
    [Crossref]
  9. T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
    [Crossref] [PubMed]
  10. W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
    [Crossref]
  11. K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
    [Crossref] [PubMed]
  12. S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).
  13. X. H. Li, X. Chen, and Z. Zeng, “Hyperconcentration for entanglement in two degrees of freedom,” J. Opt. Soc. Am. B 30(11), 2774–2780 (2013).
    [Crossref]
  14. B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
    [Crossref]
  15. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
    [Crossref]
  16. L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
    [Crossref]
  17. Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16(26), 21708–21713 (2008).
    [Crossref] [PubMed]
  18. X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
    [Crossref]
  19. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
    [Crossref] [PubMed]
  20. W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
    [Crossref]
  21. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
    [Crossref] [PubMed]
  22. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
    [Crossref]
  23. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
    [Crossref] [PubMed]
  24. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
    [Crossref]
  25. H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
    [Crossref] [PubMed]
  26. Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
    [Crossref]
  27. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
    [Crossref] [PubMed]
  28. D. A. Steck, “Rubidium 85 D Line Data,” (Revision 2.1.6, 2013), http://steck.us/alkalidata/ .
  29. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
    [Crossref]
  30. L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71(11), 1665–1668 (1993).
    [Crossref] [PubMed]
  31. P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47(2), R747–R750 (1993).
    [Crossref] [PubMed]
  32. A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52(4), 2535–2537 (1995).
    [Crossref] [PubMed]

2016 (3)

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

2015 (2)

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

2014 (1)

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

2010 (1)

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

2009 (1)

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

2008 (1)

2007 (1)

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

2006 (2)

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

2005 (1)

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

2004 (1)

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[Crossref]

2003 (2)

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

2001 (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

1999 (3)

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

1995 (1)

A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52(4), 2535–2537 (1995).
[Crossref] [PubMed]

1993 (2)

L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71(11), 1665–1668 (1993).
[Crossref] [PubMed]

P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47(2), R747–R750 (1993).
[Crossref] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref] [PubMed]

1990 (1)

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

1977 (1)

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Almeida, M. P.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Aspelmeyer, M.

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

Barreiro, J. T.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Bernstein, H. J.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

Bienfang, J. C.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Boca, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Boozer, A. D.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Bowen, W. P.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Caspani, L.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Chapman, M. S.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Chen, J. F.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Chen, K.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Chen, Q. F.

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16(26), 21708–21713 (2008).
[Crossref] [PubMed]

Chen, S.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Chen, X.

Chen, Y. A.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Chen, Z. B.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Chou, C. W.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Chu, S. T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Ding, D. S.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref] [PubMed]

Dong, M. X.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Du, S.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Duan, L.-M.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Eberhard, P. H.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47(2), R747–R750 (1993).
[Crossref] [PubMed]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref] [PubMed]

Feng, M.

Gao, W. B.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Garuccio, A.

A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52(4), 2535–2537 (1995).
[Crossref] [PubMed]

Gasparoni, S.

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

Gibbs, H. M.

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

Gisin, N.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Goebel, A.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Gong, Y. X.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Graham, T. M.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Gühne, O.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Guo, G. C.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref] [PubMed]

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16(26), 21708–21713 (2008).
[Crossref] [PubMed]

Hardy, L.

L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71(11), 1665–1668 (1993).
[Crossref] [PubMed]

Hikspoors, H. M. J.

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

James, D. F. V.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Jennewein, T.

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Junge, M.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Kimble, H. J.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Kues, M.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Kwiat, P. G.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Li, C. M.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Li, S. J.

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Li, X. H.

Li, Y.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Liang, J. L.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Little, B. E.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Liu, S. L.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Loy, M. M. T.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Lu, C. Y.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Lu, X. S.

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

Lu, Y. J.

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Mair, A.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Monken, C. H.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Morandotti, R.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Moss, D. J.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Ou, Z. Y.

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

Pan, J. S.

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

Pan, J. W.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Peng, C. Z.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Rarity, J. G.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

Reimer, C.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Restelli, A.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Roztocki, P.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Shapiro, J. H.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Shi, B. S.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref] [PubMed]

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atomic ensemble,” Opt. Express 16(26), 21708–21713 (2008).
[Crossref] [PubMed]

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[Crossref]

Shi, S.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Shrestha, S.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Souto Ribeiro, P. H.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Tapster, P. R.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

Tian, L.

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Tomita, A.

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[Crossref]

Vrehen, Q. H. F.

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

Walborn, S. P.

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Wang, H.

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Wang, K.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Wei, T. C.

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Wetzel, B.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

White, A. G.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

Wong, C. W.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Wong, F. N. C.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Wong, G. K. L.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Xie, Z. D.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Xu, X. A.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Yan, H.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Yao, X. C.

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Yuan, H. X.

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Zbinden, H.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Zeilinger, A.

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

Zeng, Z.

Zhang, Q.

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

Zhang, S.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

Zhang, Y. S.

Zhong, T.

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Zhou, Z. Y.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref] [PubMed]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

Zou, X. B.

Chin. Phys. Lett. (2)

W. Zhang, D. S. Ding, J. S. Pan, and B. S. Shi, “Non-classical correlated photon pairs generation via cascade transition of 5S1/2 – 5P3/2 – 5D5/2 in a hot 85Rb atomic vapor,” Chin. Phys. Lett. 31(6), 064208 (2014).
[Crossref]

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atomic ensemble,” Chin. Phys. Lett. 26(6), 064204 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

L. Tian, S. J. Li, H. X. Yuan, and H. Wang, “Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line,” J. Phys. Soc. Jpn. 85(12), 124403 (2016).
[Crossref]

Nat. Commun. (2)

T. M. Graham, H. J. Bernstein, T. C. Wei, M. Junge, and P. G. Kwiat, “Superdense teleportation using hyperentangled photons,” Nat. Commun. 6, 7185 (2015).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Y. Li, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Experimental realization of entanglement in multiple degrees of freedom between two quantum memories,” Nat. Commun. 7, 13514 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

Z. D. Xie, T. Zhong, S. Shrestha, X. A. Xu, J. L. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, and C. W. Wong, “Harnessing high-dimensional hyperentanglement through a biphoton frequency comb,” Nat. Photonics 9(8), 536–542 (2015).
[Crossref]

Nat. Phys. (1)

W. B. Gao, C. Y. Lu, X. C. Yao, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6(5), 331–335 (2010).
[Crossref]

Nature (4)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[Crossref]

J. W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, and A. Zeilinger, “Experimental realization of freely propagating teleported qubits,” Nature 421(6924), 721–725 (2003).
[Crossref] [PubMed]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. A (3)

P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47(2), R747–R750 (1993).
[Crossref] [PubMed]

A. Garuccio, “Hardy’s approach, Eberhard’s inequality, and supplementary assumptions,” Phys. Rev. A 52(4), 2535–2537 (1995).
[Crossref] [PubMed]

B. S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[Crossref]

Phys. Rev. Lett. (12)

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999).
[Crossref]

K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J. W. Pan, “Experimental Realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99(12), 120503 (2007).
[Crossref] [PubMed]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[Crossref]

L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71(11), 1665–1668 (1993).
[Crossref] [PubMed]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref] [PubMed]

Q. H. F. Vrehen, H. M. J. Hikspoors, and H. M. Gibbs, “Quantum beats in superfluorescence in atomic cesium,” Phys. Rev. Lett. 38(14), 764–767 (1977).
[Crossref]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Quantum Inf. Comput. (1)

S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6(4–5), 336–350 (2006).

Science (1)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Other (1)

D. A. Steck, “Rubidium 85 D Line Data,” (Revision 2.1.6, 2013), http://steck.us/alkalidata/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy levels diagram. P1, P2 and P3 are pump1, 2 and 3; S1 and S2 are signal 1 and 2. States|1>, |2>, |3>, |4> and |5> correspond to 85Rb atomic levels of 5S1/2(F = 3), 5P1/2(F' = 2), 5P1/2(F' = 3), 5P3/2(F' = 4) and 4D3/2(F” = 4) respectively.

Fig. 2
Fig. 2

Setup of experiment. FC is fiber coupler, PBS is polarization beam splitter, HWP1, HWP 2 and HWP 3 are half-wave plate, DM is dichroic mirror, MOT is magneto-optical trap, Detector 1 is In-GaAs photon detector and Detector 2 is avalanche diode.

Fig. 3
Fig. 3

Measurement of the cross-correlation function between two signals when the two–photon detuning is −30MHz. The red solid line is a guide for the eye.

Fig. 4
Fig. 4

(a) The red and black curves are the two-photon interference curves in the bases of |V> and (|H> + |V>)/21/2 of signal 1 respectively when Δ = −50MHz. (b) The quantum beat phenomenon when Δ = −50MHz, red line is the theoretical fitted curve.

Fig. 5
Fig. 5

(1)~(13) are the different results describing the different quantum beat phenomenon with the changing of two-photon detuning in the range of + 70MHz~-50MHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R= [ g S1,S2 (2) (τ)] 2 g S1,S1 (2) g S2,S2 (2) 1
| ψ S1S2 =(| H S1 | V S2 +α| V S1 | H S2 )(| ω S1 | ω S2 β| ω S1 + Δ 23 | ω S2 Δ 23 )

Metrics