Abstract

We demonstrate a novel type of Fourier Transform Spectrometer (FTS) that can be realized with CMOS compatible fabrication techniques. This FTS contains no moving components and is based on the direct detection of the interferogram generated by the interference of the evanescent fields of two co-propagating waveguide modes. The theoretical analysis indicates that this type of FTS inherently has a large bandwidth (>100 nm). The first prototype that is integrated on a Si3N4 waveguide platform is demonstrated and has an extremely small size (0.1 mm2). We introduce the operation principle and report on the preliminary experiments. The results show a moderately high resolution (6 nm) which is in good agreement with the theoretical prediction.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths

Sebastian Romero-García, Florian Merget, Frank Zhong, Hod Finkelstein, and Jeremy Witzens
Opt. Express 21(12) 14036-14046 (2013)

CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration

Ying Huang, Junfeng Song, Xianshu Luo, Tsung-Yang Liow, and Guo-Qiang Lo
Opt. Express 22(18) 21859-21865 (2014)

Solid-block stationary Fourier-transform spectrometer

Matthew P. Dierking and Mohammad A. Karim
Appl. Opt. 35(1) 84-89 (1996)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (John Wiley and Sons, 2007).
    [Crossref]
  2. C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
    [Crossref]
  3. T. Sandner, A. Kenda, C. Drabe, H. Schenk, and W. Scherf, “Miniaturized FTIR-spectrometer based on optical MEMS translatory actuator,” in MOEMS-MEMS 2007 Micro and Nanofabrication (ISOP, 2007), paper 646602.
  4. K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A: Phys. 130, 523–530 (2006).
    [Crossref]
  5. L. Wu, A. Pais, S. R. Samuelson, S. Guo, and H. Xie, “A mirror-tilt-insensitive Fourier transform spectrometer based on a large vertical displacement micromirror with dual reflective surface,” in TRANSDUCERS 2009-2009 International Solid-State Sensors (IEEE, 2009), pp. 2090–2093.
    [Crossref]
  6. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
    [Crossref]
  7. M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
    [Crossref]
  8. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).
  9. X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a Si3N4 waveguide platform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.120.
  10. K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photonics Technol. Lett. 18(21), 2287–2289 (2006).
    [Crossref]
  11. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N.A.F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
    [Crossref] [PubMed]
  12. A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
    [Crossref]
  13. M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
    [Crossref]
  14. F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
    [Crossref]
  15. A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic Lab-On-A-Chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.
  16. E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5(5), 1636–1648 (2014).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

2011 (1)

2007 (2)

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

2006 (2)

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photonics Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A: Phys. 130, 523–530 (2006).
[Crossref]

2004 (1)

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

Aalto, T.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photonics Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

Abrams, M. C.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

Bacon, C. P.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

Baets, R.

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5(5), 1636–1648 (2014).
[Crossref] [PubMed]

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic Lab-On-A-Chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a Si3N4 waveguide platform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.120.

Benech, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

Bienstman, P.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Blaize, S.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Bockstaele, R.

Bogaerts, W.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Bonneville, C.

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

Brault, J. W.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

Cheben, P.

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

Chrostowski, L.

Claes, T.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Davis, S. P.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (John Wiley and Sons, 2007).
[Crossref]

DeFrece, R.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

Dhakal, A.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic Lab-On-A-Chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Drabe, C.

T. Sandner, A. Kenda, C. Drabe, H. Schenk, and W. Scherf, “Miniaturized FTIR-spectrometer based on optical MEMS translatory actuator,” in MOEMS-MEMS 2007 Micro and Nanofabrication (ISOP, 2007), paper 646602.

Du Bois, B.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Duchemin, C.

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

Dumon, P.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Fedeli, J. M.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Fiers, M.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Florjanczyk, M.

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

Gonthize, T.

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (John Wiley and Sons, 2007).
[Crossref]

Guo, S.

L. Wu, A. Pais, S. R. Samuelson, S. Guo, and H. Xie, “A mirror-tilt-insensitive Fourier transform spectrometer based on a large vertical displacement micromirror with dual reflective surface,” in TRANSDUCERS 2009-2009 International Solid-State Sensors (IEEE, 2009), pp. 2090–2093.
[Crossref]

Harjanne, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photonics Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

Helin, P.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Jaeger, N.A.F.

Jansen, R.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Janz, S.

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

Kapulainen, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photonics Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

Kenda, A.

T. Sandner, A. Kenda, C. Drabe, H. Schenk, and W. Scherf, “Miniaturized FTIR-spectrometer based on optical MEMS translatory actuator,” in MOEMS-MEMS 2007 Micro and Nanofabrication (ISOP, 2007), paper 646602.

Kern, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Krishnamoorthy, U.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A: Phys. 130, 523–530 (2006).
[Crossref]

Lambert, E.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Le Coarer, E.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

Le Thomas, N.

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic Lab-On-A-Chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Leblond, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Lee, D.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A: Phys. 130, 523–530 (2006).
[Crossref]

Lérondel, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Leyssens, K.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Maes, B.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Martin, B.

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

Mattley, Y.

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

Morand, A.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Morino, E.

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

Neutens, P.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Nie, X.

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a Si3N4 waveguide platform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.120.

Pais, A.

L. Wu, A. Pais, S. R. Samuelson, S. Guo, and H. Xie, “A mirror-tilt-insensitive Fourier transform spectrometer based on a large vertical displacement micromirror with dual reflective surface,” in TRANSDUCERS 2009-2009 International Solid-State Sensors (IEEE, 2009), pp. 2090–2093.
[Crossref]

Park, N.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A: Phys. 130, 523–530 (2006).
[Crossref]

Pathak, S.

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Peyskens, F.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic Lab-On-A-Chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Puget, R.

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

Roelkens, G.

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a Si3N4 waveguide platform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.120.

Rottenberg, X.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Royer, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Ryckeboer, E.

E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, and R. Baets, “Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip,” Biomed. Opt. Express 5(5), 1636–1648 (2014).
[Crossref] [PubMed]

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a Si3N4 waveguide platform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.120.

Samuelson, S. R.

L. Wu, A. Pais, S. R. Samuelson, S. Guo, and H. Xie, “A mirror-tilt-insensitive Fourier transform spectrometer based on a large vertical displacement micromirror with dual reflective surface,” in TRANSDUCERS 2009-2009 International Solid-State Sensors (IEEE, 2009), pp. 2090–2093.
[Crossref]

Sandner, T.

T. Sandner, A. Kenda, C. Drabe, H. Schenk, and W. Scherf, “Miniaturized FTIR-spectrometer based on optical MEMS translatory actuator,” in MOEMS-MEMS 2007 Micro and Nanofabrication (ISOP, 2007), paper 646602.

Schenk, H.

T. Sandner, A. Kenda, C. Drabe, H. Schenk, and W. Scherf, “Miniaturized FTIR-spectrometer based on optical MEMS translatory actuator,” in MOEMS-MEMS 2007 Micro and Nanofabrication (ISOP, 2007), paper 646602.

Scherf, W.

T. Sandner, A. Kenda, C. Drabe, H. Schenk, and W. Scherf, “Miniaturized FTIR-spectrometer based on optical MEMS translatory actuator,” in MOEMS-MEMS 2007 Micro and Nanofabrication (ISOP, 2007), paper 646602.

Scott, A.

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

Selvaraja, S.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Shi, W.

Skirtach, A.

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic Lab-On-A-Chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Solehmainen, K.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photonics Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

Solgaard, O.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A: Phys. 130, 523–530 (2006).
[Crossref]

Solheim, B.

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

Stefanon, I.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Subramanian, A. Z.

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic Lab-On-A-Chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Subramanian, A.Z.

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

Thomas, F.

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

Vanslembrouck, M.

Wang, X.

Wu, L.

L. Wu, A. Pais, S. R. Samuelson, S. Guo, and H. Xie, “A mirror-tilt-insensitive Fourier transform spectrometer based on a large vertical displacement micromirror with dual reflective surface,” in TRANSDUCERS 2009-2009 International Solid-State Sensors (IEEE, 2009), pp. 2090–2093.
[Crossref]

Wuytens, P.

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic Lab-On-A-Chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Xie, H.

L. Wu, A. Pais, S. R. Samuelson, S. Guo, and H. Xie, “A mirror-tilt-insensitive Fourier transform spectrometer based on a large vertical displacement micromirror with dual reflective surface,” in TRANSDUCERS 2009-2009 International Solid-State Sensors (IEEE, 2009), pp. 2090–2093.
[Crossref]

Xu, D.X.

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

Yu, K.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A: Phys. 130, 523–530 (2006).
[Crossref]

Zhang, W.

Biomed. Opt. Express (1)

IEEE Photonics J. (1)

A.Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, and K. Leyssens, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a CMOS pilot line,” IEEE Photonics J. 5(6), 2202809 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photonics Technol. Lett. 18(21), 2287–2289 (2006).
[Crossref]

J. Comput. Sci. (1)

M. Fiers, E. Lambert, S. Pathak, B. Maes, P. Bienstman, W. Bogaerts, and P. Dumon, “Improving the design cycle for nanophotonic components,” J. Comput. Sci. 4(5), 313–324 (2013).
[Crossref]

Nat. Photonics (1)

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. M. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1(8), 473–478 (2007).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.X. Xu, “Planar waveguide spatial heterodyne spectrometer,” Proc. SPIE 6796, 67963J (2007).
[Crossref]

Rev. Sci. Instrum. (1)

C. P. Bacon, Y. Mattley, and R. DeFrece, “Miniature spectroscopic instrumentation: applications to biology and chemistry,” Rev. Sci. Instrum. 75(1), 1–16 (2004).
[Crossref]

Sens. Actuators A: Phys. (1)

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A: Phys. 130, 523–530 (2006).
[Crossref]

Other (7)

L. Wu, A. Pais, S. R. Samuelson, S. Guo, and H. Xie, “A mirror-tilt-insensitive Fourier transform spectrometer based on a large vertical displacement micromirror with dual reflective surface,” in TRANSDUCERS 2009-2009 International Solid-State Sensors (IEEE, 2009), pp. 2090–2093.
[Crossref]

T. Sandner, A. Kenda, C. Drabe, H. Schenk, and W. Scherf, “Miniaturized FTIR-spectrometer based on optical MEMS translatory actuator,” in MOEMS-MEMS 2007 Micro and Nanofabrication (ISOP, 2007), paper 646602.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

X. Nie, E. Ryckeboer, G. Roelkens, and R. Baets, “Novel concept for a broadband co-propagative stationary Fourier transform spectrometer integrated on a Si3N4 waveguide platform,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JW2A.120.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (John Wiley and Sons, 2007).
[Crossref]

F. Thomas, B. Martin, C. Duchemin, R. Puget, E. Morino, C. Bonneville, T. Gonthize, P. Benech, and E. Le Coarer, “Major advances in developments and algorithms of the stationary-wave integrated Fourier-transform technology,” in Light, Energy and the Environment, OSA Technical Digest (online) (Optical Society of America, 2016), paper FTh2C.2.
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, A. Skirtach, N. Le Thomas, and R. Baets, “Nanophotonic Lab-On-A-Chip Raman sensors: a sensitivity comparison with confocal Raman microscope,” in Proceedings of IEEE Conference on BioPhotonics (IEEE, 2015), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Conceptual drawing of the co-propagative stationary FTS. [9]

Fig. 2
Fig. 2

(a) Simulation results of the interference pattern between the two waveguides in the case of single wavelength injection. The position where one should position the grating is marked by the blue frame. (b) A zoom in of the interferogram in the grating region. (c) A zoom-in of the first several periods of the intensity oscillation. [9]

Fig. 3
Fig. 3

SEM pictures of: (a) Fully etched MMI, (b) taper section tapering wire waveguides to rib waveguides with different widths, (c) the main structure containing two rib waveguides with different widths and a grating. The insert in (c) shows the cross section, with G indicating the grating.

Fig. 4
Fig. 4

(a) The setup used in the preliminary experiments, where we use a lensed fiber (LF) to couple the signal into the chip, and project the interferogram onto a CCD camera with an objective lens (OBJ). Two laser sources (L1 and L2) with the polarization controller (PC) can be applied simultaneously or individually. The CCD camera and OBJ (both shown inside the blue dash box) can move together to scan the whole interferogram. (b) The entire interferogram reconstructed by stitching of 8 snapshots. (c) One of the snapshots obtained during the scanning.

Fig. 5
Fig. 5

(a) Plot of the intensity profile extracted from the measured interferogram. The inset shows the computed sinusoidal interferogram with same period and total length as the measured one: the red curve has the same power decay rate while the green curve has no decay. (b) The spectrum calculated from the interferogram measured as shown in (a). (c) A zoom-in of the spectrum displayed in (b) together with the green and red spectrum resulting from the Fourier transform of the calculated interferogram in the inset of (a).

Fig. 6
Fig. 6

Two sets of experimental results obtained with two laser sources. The interferogram (a) and the spectrum (b) of the input laser light of 900 nm & 822 nm. The interferogram (c) and the spectrum (d) for 900 nm & 876 nm laser light. The insets show the snapshots taken by the CCD camera.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) I 1 + I 2 + 2 I 1 I 2 cos ( Δ β x ) ,
Δ β = β 1 β 2 2 π Δ n eff λ .
Λ = λ Δ n eff .
δ λ 1.207 λ 2 Δ n eff L .