Abstract

We present the optical investigation of a novel back-contacted architecture for solar cells based on a thin barium (di)silicide (BaSi2) absorber. First, through the analysis of absorption limits of different semiconducting materials, we show the potential of BaSi2 for photovoltaic applications. Then, the proposed back contacted BaSi2 solar cell design is investigated and optimized. An implied photocurrent density of 40.3 mA/cm2 in a 1-μm thick absorber was achieved, paving the way for novel BaSi2-based thin-film solar cells.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells

Chidozie Onwudinanti, Robin Vismara, Olindo Isabella, Louis Grenet, Fabrice Emieux, and Miro Zeman
Opt. Express 24(6) A693-A707 (2016)

Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures

Klaus Jäger, Lars Korte, Bernd Rech, and Steve Albrecht
Opt. Express 25(12) A473-A482 (2017)

Optical scattering modeling of etched ZnO:Al superstrates and device simulation studies of a-Si:H solar cells with different texture morphologies

Xia Yan, Weimin Li, Armin G. Aberle, and Selvaraj Venkataraj
Appl. Opt. 55(24) 6718-6726 (2016)

References

  • View by:
  • |
  • |
  • |

  1. ©Fraunhofer ISE: Photovoltaics Report, updated: 17 November 2016.
  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
    [Crossref]
  3. K. Morita, Y. Inomata, and T. Suemasu, “Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy,” Thin Solid Films 508(1–2), 363–366 (2006).
    [Crossref]
  4. D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, “Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties,” Phys. Status Solidi 244(7), 2611–2618 (2007).
    [Crossref]
  5. S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
    [Crossref]
  6. K. Toh, T. Saito, and T. Suemasu, “Optical absorption properties of BaSi2 epitaxial films grown on a transparent silicon-on-insulator substrate using molecular beam epitaxy,” Jpn. J. Appl. Phys. 50(6R), 068001 (2011).
    [Crossref]
  7. N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, “Fabrication and characterization of polycrystalline BaSi2 by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(12), 1759–1761 (2013).
    [Crossref]
  8. M. Kumar, N. Umezawa, and M. Imai, “BaSi2 as a promising low-cost, earth-abundant material with large optical activity for thin-film solar cells: A hybrid density functional study,” Appl. Phys. Express 7(7), 071203 (2014).
    [Crossref]
  9. K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, “Simple vacuum evaporation route to BaSi2 thin films for solar cell applications,” Procedia Eng. 141, 27–31 (2016).
    [Crossref]
  10. R. Vismara, O. Isabella, and M. Zeman, “Organometallic Halide Perovskite/Barium Di-Silicide Thin-Film Double-Junction Solar Cells,” Proc. SPIE 9898, 98980J (2016).
    [Crossref]
  11. M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
    [Crossref]
  12. M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
    [Crossref]
  13. K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
    [Crossref]
  14. USGS, “Rare earth elements-Critical resources for high technology,” http://pubs.usgs.gov/fs/2002/fs087-02/ .
  15. ANSYS white paper, “ANSYS HFSS,” http://www.ansys.com/Products/Electronics/ANSYS-HFSS .
  16. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
    [Crossref]
  17. M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
    [Crossref]
  18. O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
    [Crossref]
  19. C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
    [Crossref] [PubMed]
  20. NREL, “Reference solar spectral irradiance: air mass 1.5,” http://rredc.nrel.gov/solar/spectra/am1.5/ .
  21. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
    [Crossref]
  22. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
    [Crossref]
  23. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [Crossref] [PubMed]
  24. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
    [Crossref]
  25. Z. Yu, M. Leilaeioun, and Z. Holman, “Selecting tandem partners for silicon solar cells,” Nat. Energ. 1(11), 16137 (2016).
    [Crossref]
  26. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  27. O. Isabella, A. Ingenito, D. Linssen, and M. Zeman, “Front/rear decoupled texturing in refractive and diffractive regimes for ultra-thin silicon-based solar cells,” in OSA Technical Digest (2013), paper PM4C.2.
  28. S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, “Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells,” Appl. Phys. Lett. 109(7), 072103 (2016).
    [Crossref]
  29. B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
    [Crossref]
  30. H. Tan, P. Babal, M. Zeman, and A. H. M. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 132, 597–605 (2015).
    [Crossref]
  31. V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
    [Crossref]
  32. A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
    [Crossref]
  33. A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
    [Crossref]

2016 (7)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, “Simple vacuum evaporation route to BaSi2 thin films for solar cell applications,” Procedia Eng. 141, 27–31 (2016).
[Crossref]

R. Vismara, O. Isabella, and M. Zeman, “Organometallic Halide Perovskite/Barium Di-Silicide Thin-Film Double-Junction Solar Cells,” Proc. SPIE 9898, 98980J (2016).
[Crossref]

C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
[Crossref] [PubMed]

Z. Yu, M. Leilaeioun, and Z. Holman, “Selecting tandem partners for silicon solar cells,” Nat. Energ. 1(11), 16137 (2016).
[Crossref]

S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, “Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells,” Appl. Phys. Lett. 109(7), 072103 (2016).
[Crossref]

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

2015 (1)

H. Tan, P. Babal, M. Zeman, and A. H. M. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 132, 597–605 (2015).
[Crossref]

2014 (3)

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

M. Kumar, N. Umezawa, and M. Imai, “BaSi2 as a promising low-cost, earth-abundant material with large optical activity for thin-film solar cells: A hybrid density functional study,” Appl. Phys. Express 7(7), 071203 (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

2013 (6)

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, “Fabrication and characterization of polycrystalline BaSi2 by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(12), 1759–1761 (2013).
[Crossref]

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
[Crossref]

2012 (2)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

2011 (1)

K. Toh, T. Saito, and T. Suemasu, “Optical absorption properties of BaSi2 epitaxial films grown on a transparent silicon-on-insulator substrate using molecular beam epitaxy,” Jpn. J. Appl. Phys. 50(6R), 068001 (2011).
[Crossref]

2010 (1)

2007 (2)

D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, “Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties,” Phys. Status Solidi 244(7), 2611–2618 (2007).
[Crossref]

S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
[Crossref]

2006 (2)

K. Morita, Y. Inomata, and T. Suemasu, “Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy,” Thin Solid Films 508(1–2), 363–366 (2006).
[Crossref]

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

2002 (1)

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[Crossref]

1984 (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Baba, M.

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
[Crossref]

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

Babal, P.

H. Tan, P. Babal, M. Zeman, and A. H. M. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 132, 597–605 (2015).
[Crossref]

Borisenko, V. E.

D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, “Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties,” Phys. Status Solidi 244(7), 2611–2618 (2007).
[Crossref]

Brooks, B. G.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Caratelli, D.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

Cody, G. D.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Damiano, A.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
[Crossref]

Demontis, V.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
[Crossref]

Du, W.

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Emieux, F.

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[Crossref]

Grenet, L.

Hamada, N.

S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
[Crossref]

Hara, K. O.

K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, “Simple vacuum evaporation route to BaSi2 thin films for solar cell applications,” Procedia Eng. 141, 27–31 (2016).
[Crossref]

K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
[Crossref]

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

Heil, S. B. S.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Hoex, B.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Holman, Z.

Z. Yu, M. Leilaeioun, and Z. Holman, “Selecting tandem partners for silicon solar cells,” Nat. Energ. 1(11), 16137 (2016).
[Crossref]

Iida, T.

S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
[Crossref]

Imai, M.

M. Kumar, N. Umezawa, and M. Imai, “BaSi2 as a promising low-cost, earth-abundant material with large optical activity for thin-film solar cells: A hybrid density functional study,” Appl. Phys. Express 7(7), 071203 (2014).
[Crossref]

Imai, T.

S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
[Crossref]

Imai, Y.

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

Ingenito, A.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

Inomata, Y.

K. Morita, Y. Inomata, and T. Suemasu, “Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy,” Thin Solid Films 508(1–2), 363–366 (2006).
[Crossref]

Isabella, O.

R. Vismara, O. Isabella, and M. Zeman, “Organometallic Halide Perovskite/Barium Di-Silicide Thin-Film Double-Junction Solar Cells,” Proc. SPIE 9898, 98980J (2016).
[Crossref]

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
[Crossref] [PubMed]

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

Ito, K.

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

Jäger, K.

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Jiptner, K.

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

Kessels, W. M. M.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Kimura, A.

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

Kishino, S.

S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
[Crossref]

Kondo, M.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

Kumar, M.

M. Kumar, N. Umezawa, and M. Imai, “BaSi2 as a promising low-cost, earth-abundant material with large optical activity for thin-film solar cells: A hybrid density functional study,” Appl. Phys. Express 7(7), 071203 (2014).
[Crossref]

Langereis, E.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Latiff, N. A. A.

N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, “Fabrication and characterization of polycrystalline BaSi2 by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(12), 1759–1761 (2013).
[Crossref]

Leilaeioun, M.

Z. Yu, M. Leilaeioun, and Z. Holman, “Selecting tandem partners for silicon solar cells,” Nat. Energ. 1(11), 16137 (2016).
[Crossref]

Liu, J.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Lizcano, J. C. O.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

Luxembourg, S. L.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

Matsumaru, K.

N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, “Fabrication and characterization of polycrystalline BaSi2 by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(12), 1759–1761 (2013).
[Crossref]

Melskens, J.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
[Crossref]

Migas, D. B.

D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, “Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties,” Phys. Status Solidi 244(7), 2611–2618 (2007).
[Crossref]

Morita, K.

K. Morita, Y. Inomata, and T. Suemasu, “Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy,” Thin Solid Films 508(1–2), 363–366 (2006).
[Crossref]

Nakagawa, Y.

K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, “Simple vacuum evaporation route to BaSi2 thin films for solar cell applications,” Procedia Eng. 141, 27–31 (2016).
[Crossref]

Nakaishi, Y.

S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
[Crossref]

Nakamura, K.

K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
[Crossref]

Okamoto, K.

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

Onwudinanti, C.

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Raman, A.

Sai, H.

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

Saito, T.

K. Toh, T. Saito, and T. Suemasu, “Optical absorption properties of BaSi2 epitaxial films grown on a transparent silicon-on-insulator substrate using molecular beam epitaxy,” Jpn. J. Appl. Phys. 50(6R), 068001 (2011).
[Crossref]

Sanai, T.

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

Sanna, C.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
[Crossref]

Santbergen, R.

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
[Crossref]

Sato, N.

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

Sekiguchi, T.

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

Shaposhnikov, V. L.

D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, “Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties,” Phys. Status Solidi 244(7), 2611–2618 (2007).
[Crossref]

Shibutami, T.

N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, “Fabrication and characterization of polycrystalline BaSi2 by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(12), 1759–1761 (2013).
[Crossref]

Shinada, M.

S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

Smets, A. H. M.

H. Tan, P. Babal, M. Zeman, and A. H. M. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 132, 597–605 (2015).
[Crossref]

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
[Crossref]

Solntsev, S.

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Spinelli, P.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

Suemasu, T.

S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, “Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells,” Appl. Phys. Lett. 109(7), 072103 (2016).
[Crossref]

K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, “Simple vacuum evaporation route to BaSi2 thin films for solar cell applications,” Procedia Eng. 141, 27–31 (2016).
[Crossref]

N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, “Fabrication and characterization of polycrystalline BaSi2 by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(12), 1759–1761 (2013).
[Crossref]

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
[Crossref]

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

K. Toh, T. Saito, and T. Suemasu, “Optical absorption properties of BaSi2 epitaxial films grown on a transparent silicon-on-insulator substrate using molecular beam epitaxy,” Jpn. J. Appl. Phys. 50(6R), 068001 (2011).
[Crossref]

K. Morita, Y. Inomata, and T. Suemasu, “Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy,” Thin Solid Films 508(1–2), 363–366 (2006).
[Crossref]

Takabe, R.

S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, “Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells,” Appl. Phys. Lett. 109(7), 072103 (2016).
[Crossref]

K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
[Crossref]

Takanashi, Y.

S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
[Crossref]

Takeuchi, H.

S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, “Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells,” Appl. Phys. Lett. 109(7), 072103 (2016).
[Crossref]

Tan, H.

H. Tan, P. Babal, M. Zeman, and A. H. M. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 132, 597–605 (2015).
[Crossref]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Toh, K.

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

K. Toh, T. Saito, and T. Suemasu, “Optical absorption properties of BaSi2 epitaxial films grown on a transparent silicon-on-insulator substrate using molecular beam epitaxy,” Jpn. J. Appl. Phys. 50(6R), 068001 (2011).
[Crossref]

Toko, K.

S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, “Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells,” Appl. Phys. Lett. 109(7), 072103 (2016).
[Crossref]

N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, “Fabrication and characterization of polycrystalline BaSi2 by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(12), 1759–1761 (2013).
[Crossref]

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
[Crossref]

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

Ueda, S.

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

Umezawa, N.

M. Kumar, N. Umezawa, and M. Imai, “BaSi2 as a promising low-cost, earth-abundant material with large optical activity for thin-film solar cells: A hybrid density functional study,” Appl. Phys. Express 7(7), 071203 (2014).
[Crossref]

Usami, N.

K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, “Simple vacuum evaporation route to BaSi2 thin films for solar cell applications,” Procedia Eng. 141, 27–31 (2016).
[Crossref]

K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
[Crossref]

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

van de Sanden, M. C. M.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Vismara, R.

C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
[Crossref] [PubMed]

R. Vismara, O. Isabella, and M. Zeman, “Organometallic Halide Perovskite/Barium Di-Silicide Thin-Film Double-Junction Solar Cells,” Proc. SPIE 9898, 98980J (2016).
[Crossref]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

Weeber, A. W.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

Yablonovitch, E.

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

Yachi, S.

S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, “Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells,” Appl. Phys. Lett. 109(7), 072103 (2016).
[Crossref]

Yoneyama, T.

N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, “Fabrication and characterization of polycrystalline BaSi2 by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(12), 1759–1761 (2013).
[Crossref]

Yoshizawa, N.

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

Yu, Z.

Z. Yu, M. Leilaeioun, and Z. Holman, “Selecting tandem partners for silicon solar cells,” Nat. Energ. 1(11), 16137 (2016).
[Crossref]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Zeman, M.

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

C. Onwudinanti, R. Vismara, O. Isabella, L. Grenet, F. Emieux, and M. Zeman, “Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells,” Opt. Express 24(6), A693–A707 (2016).
[Crossref] [PubMed]

R. Vismara, O. Isabella, and M. Zeman, “Organometallic Halide Perovskite/Barium Di-Silicide Thin-Film Double-Junction Solar Cells,” Proc. SPIE 9898, 98980J (2016).
[Crossref]

H. Tan, P. Babal, M. Zeman, and A. H. M. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 132, 597–605 (2015).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

ACS Photonics (1)

A. Ingenito, O. Isabella, and M. Zeman, “Experimental demonstration of 4n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector,” ACS Photonics 1(3), 270–278 (2014).
[Crossref]

Appl. Phys. Express (2)

M. Kumar, N. Umezawa, and M. Imai, “BaSi2 as a promising low-cost, earth-abundant material with large optical activity for thin-film solar cells: A hybrid density functional study,” Appl. Phys. Express 7(7), 071203 (2014).
[Crossref]

K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko, and T. Suemasu, “Determination of bulk minority-carrier lifetime in BaSi2 earth-abundant absorber films by utilizing a drastic enhancement of carrier lifetime by post-growth annealing,” Appl. Phys. Express 6(11), 112302 (2013).
[Crossref]

Appl. Phys. Lett. (2)

S. Yachi, R. Takabe, H. Takeuchi, K. Toko, and T. Suemasu, “Effect of amorphous Si capping layer on the hole transport properties of BaSi2 and improved conversion efficiency approaching 10% in p-BaSi2/n-Si solar cells,” Appl. Phys. Lett. 109(7), 072103 (2016).
[Crossref]

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

IEEE J. Photovolt. (1)

A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized metal-free back reflectors for high-efficiency open rear c-Si solar cells,” IEEE J. Photovolt. 6(1), 34–40 (2016).
[Crossref]

IEEE Trans. Electron Dev. (1)

T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Dev. 31(5), 711–716 (1984).
[Crossref]

J. Alloys Compd. (1)

S. Kishino, T. Imai, T. Iida, Y. Nakaishi, M. Shinada, Y. Takanashi, and N. Hamada, “Electronic and optical properties of bulk crystals of semiconducting orthorhombic BaSi2 prepared by the vertical Bridgman method,” J. Alloys Compd. 428(1–2), 22–27 (2007).
[Crossref]

J. Appl. Phys. (3)

M. Baba, K. Ito, W. Du, T. Sanai, K. Okamoto, K. Toko, S. Ueda, Y. Imai, A. Kimura, and T. Suemasu, “Hard x-ray photoelectron spectroscopy study on valence band structure of semiconducting BaSi2,” J. Appl. Phys. 114(12), 123702 (2013).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961).
[Crossref]

V. Demontis, C. Sanna, J. Melskens, R. Santbergen, A. H. M. Smets, A. Damiano, and M. Zeman, “The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells,” J. Appl. Phys. 113(6), 064508 (2013).
[Crossref]

J. Cryst. Growth (1)

M. Baba, K. Toh, K. Toko, N. Sato, N. Yoshizawa, K. Jiptner, T. Sekiguchi, K. O. Hara, N. Usami, and T. Suemasu, “Investigation of grain boundaries in BaSi2 epitaxial films on Si(111) substrates using transmission electron microscopy and electron-beam-induced current technique,” J. Cryst. Growth 348(1), 75–79 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Toh, T. Saito, and T. Suemasu, “Optical absorption properties of BaSi2 epitaxial films grown on a transparent silicon-on-insulator substrate using molecular beam epitaxy,” Jpn. J. Appl. Phys. 50(6R), 068001 (2011).
[Crossref]

Nano Lett. (1)

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Nat. Energ. (1)

Z. Yu, M. Leilaeioun, and Z. Holman, “Selecting tandem partners for silicon solar cells,” Nat. Energ. 1(11), 16137 (2016).
[Crossref]

Opt. Express (2)

Phys. Status Solidi (1)

D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, “Isostructural BaSi2, BaGe2 and SrGe2: electronic and optical properties,” Phys. Status Solidi 244(7), 2611–2618 (2007).
[Crossref]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

N. A. A. Latiff, T. Yoneyama, T. Shibutami, K. Matsumaru, K. Toko, and T. Suemasu, “Fabrication and characterization of polycrystalline BaSi2 by RF sputtering,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 10(12), 1759–1761 (2013).
[Crossref]

Proc. SPIE (1)

R. Vismara, O. Isabella, and M. Zeman, “Organometallic Halide Perovskite/Barium Di-Silicide Thin-Film Double-Junction Solar Cells,” Proc. SPIE 9898, 98980J (2016).
[Crossref]

Procedia Eng. (1)

K. O. Hara, Y. Nakagawa, T. Suemasu, and N. Usami, “Simple vacuum evaporation route to BaSi2 thin films for solar cell applications,” Procedia Eng. 141, 27–31 (2016).
[Crossref]

Prog. Photovolt. Res. Appl. (4)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 48),” Prog. Photovolt. Res. Appl. 24(7), 905–913 (2016).
[Crossref]

O. Isabella, H. Sai, M. Kondo, and M. Zeman, “Full-wave optoelectrical modeling of optimized flattened light scattering substrate for high efficiency thin-film silicon solar cells,” Prog. Photovolt. Res. Appl. 22(6), 671–689 (2014).
[Crossref]

O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt. Res. Appl. 21(1), 94–108 (2013).
[Crossref]

M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

H. Tan, P. Babal, M. Zeman, and A. H. M. Smets, “Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 132, 597–605 (2015).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 119, 94–111 (2013).
[Crossref]

Thin Solid Films (1)

K. Morita, Y. Inomata, and T. Suemasu, “Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy,” Thin Solid Films 508(1–2), 363–366 (2006).
[Crossref]

Other (5)

©Fraunhofer ISE: Photovoltaics Report, updated: 17 November 2016.

USGS, “Rare earth elements-Critical resources for high technology,” http://pubs.usgs.gov/fs/2002/fs087-02/ .

ANSYS white paper, “ANSYS HFSS,” http://www.ansys.com/Products/Electronics/ANSYS-HFSS .

NREL, “Reference solar spectral irradiance: air mass 1.5,” http://rredc.nrel.gov/solar/spectra/am1.5/ .

O. Isabella, A. Ingenito, D. Linssen, and M. Zeman, “Front/rear decoupled texturing in refractive and diffractive regimes for ultra-thin silicon-based solar cells,” in OSA Technical Digest (2013), paper PM4C.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) GSJ (black line) and GGreen of 1-μm thick PV materials (black dots). (b) Power density of a 100-nm thick BaSi2 layer, with ‘Green limit’ and losses indicated.

Fig. 2
Fig. 2

(a) 3-D sketch of the back-contact BaSi2 solar cell model. (b) Implied Jph generated in the absorber (BaSi2) and lost due to reflection (R), for different values of doping layers height.

Fig. 3
Fig. 3

Jph-BaSi2 for different values of distance between doped fingers and between metal contacts (left) and breakdown of Jph absorbed and lost for significant gap distances (right).

Fig. 4
Fig. 4

Absorptance in BaSi2 and optical losses for an architecture with Al2O3 + a-Si:H passivation (a) and with a 40 nm-thick SiNx passivation (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J ph-i (λ)=q 300nm 1200nm A i (λ) Φ AM1.5 (λ)dλ ,
A Green = 1 e 4αd 1(11/ n 2 ) e 4αd
G AM1.5 = 0 Φ AM1.5 (λ) hc λ dλ 1000 W/m 2 ,
G SJ ( λ gap )= hc λ gap 0 λ gap Φ AM1.5 (λ)dλ .
G Green = hc λ gap 0 λ gap A Green (λ) Φ AM1.5 (λ)dλ ,