Abstract

In this paper, a double layer nanoparticle-crystal has been proposed, which shown incident and polarization angle, substrate independences for spectral absorptivity. Such phenomenon originates from the near-field light redistribution and excitation of internal collective oscillating. This kind of nanoparticle-crystal can be made of various types of metal with similar optical responses. A three oscillators mode has been proposed in this paper to understand the shift between global and internal collective oscillating, and verify the physical picture demonstrated. That kind of near-field redistribution result in a prototype of novel meta-coating, and facilitates the large scale application of metamaterial.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  3. H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
    [Crossref] [PubMed]
  4. B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensionalgrating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
    [Crossref]
  5. L. X. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. H. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–37 (2014).
    [Crossref]
  6. R. Feng, J. Qiu, L. H. Liu, W. Q. Ding, and L. X. Chen, “Parallel LC circuit model for multi-bandabsorption and preliminary design of radiativecooling,” Opt. Express 22(S7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  7. B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons inhBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).
  8. Y. Hadad, J. C. Soric, and A. Alu, “Breaking temporal symmetries for emission and absorption,” Proc. Natl. Acad. Sci. U.S.A. 113(13), 3471–3475 (2016).
    [Crossref] [PubMed]
  9. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [Crossref] [PubMed]
  10. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  11. H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
    [Crossref] [PubMed]
  12. A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
    [Crossref] [PubMed]
  13. Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
    [Crossref] [PubMed]
  14. H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
    [Crossref] [PubMed]
  15. M. D. Zhang and X. D. Zhang, “Ultrasensitive optical absorption ingraphene based on bound states in thecontinuum,” Sci. Rep. 5(1), 1–6 (2015).
  16. M. M. Hossain, B. H. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(1), 1041–1057 (2015).
  17. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(2), 517 (2011).
    [Crossref] [PubMed]
  18. L. La Spada and L. Vegni, “Metamaterial-based wideband electromagnetic wave absorber,” Opt. Express 24(6), 5763–5772 (2016).
    [Crossref] [PubMed]
  19. B. T. Wong, M. Francoeur, V. N.-S. Bong, and M. P. Mengüç, “Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film,” J. Quant. Spectrosc. Radiat. Transf. 143(1), 46–55 (2014).
    [Crossref]
  20. X. L. Liu, I. T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(1), 092073 (2014).
  21. X. L. Liu, B. Zho, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. 91(1), 062510 (2015).
  22. Y. Yang and L. P. Wang, “Spectrally enhancing near-field radiative transfer between gold gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117(1), 044301 (2016).
    [Crossref] [PubMed]
  23. Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25(1), 115–119 (2013).
    [Crossref] [PubMed]
  24. S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
    [Crossref] [PubMed]
  25. W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6(1), 951–960 (2012).
    [Crossref] [PubMed]
  26. W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
    [Crossref] [PubMed]
  27. Z. X. Jia, Y. Shuai, S. D. Xu, and H. P. Tan, “Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer,” Opt. Express 23(19), A1096–A1110 (2015).
    [Crossref] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  29. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill Education, 2007).
  30. S. Chen, L. Y. Meng, J. W. Hu, and Z. L. Yang, “Fano interference between higher localized and propagatingsurface plasmon modes in nanovoid arrays,” Plasmonics 10(1), 71–76 (2015).
    [Crossref]
  31. H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
    [Crossref]

2016 (4)

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons inhBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).

Y. Hadad, J. C. Soric, and A. Alu, “Breaking temporal symmetries for emission and absorption,” Proc. Natl. Acad. Sci. U.S.A. 113(13), 3471–3475 (2016).
[Crossref] [PubMed]

L. La Spada and L. Vegni, “Metamaterial-based wideband electromagnetic wave absorber,” Opt. Express 24(6), 5763–5772 (2016).
[Crossref] [PubMed]

Y. Yang and L. P. Wang, “Spectrally enhancing near-field radiative transfer between gold gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117(1), 044301 (2016).
[Crossref] [PubMed]

2015 (6)

X. L. Liu, B. Zho, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. 91(1), 062510 (2015).

Z. X. Jia, Y. Shuai, S. D. Xu, and H. P. Tan, “Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer,” Opt. Express 23(19), A1096–A1110 (2015).
[Crossref] [PubMed]

S. Chen, L. Y. Meng, J. W. Hu, and Z. L. Yang, “Fano interference between higher localized and propagatingsurface plasmon modes in nanovoid arrays,” Plasmonics 10(1), 71–76 (2015).
[Crossref]

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

M. D. Zhang and X. D. Zhang, “Ultrasensitive optical absorption ingraphene based on bound states in thecontinuum,” Sci. Rep. 5(1), 1–6 (2015).

M. M. Hossain, B. H. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(1), 1041–1057 (2015).

2014 (7)

B. T. Wong, M. Francoeur, V. N.-S. Bong, and M. P. Mengüç, “Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film,” J. Quant. Spectrosc. Radiat. Transf. 143(1), 46–55 (2014).
[Crossref]

X. L. Liu, I. T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(1), 092073 (2014).

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
[Crossref] [PubMed]

L. X. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. H. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–37 (2014).
[Crossref]

R. Feng, J. Qiu, L. H. Liu, W. Q. Ding, and L. X. Chen, “Parallel LC circuit model for multi-bandabsorption and preliminary design of radiativecooling,” Opt. Express 22(S7), A1713–A1724 (2014).
[Crossref] [PubMed]

H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
[Crossref] [PubMed]

2013 (3)

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensionalgrating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

2012 (2)

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6(1), 951–960 (2012).
[Crossref] [PubMed]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

2011 (3)

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(2), 517 (2011).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
[Crossref] [PubMed]

2005 (1)

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

2004 (1)

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Ahn, W.

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6(1), 951–960 (2012).
[Crossref] [PubMed]

Alu, A.

Y. Hadad, J. C. Soric, and A. Alu, “Breaking temporal symmetries for emission and absorption,” Proc. Natl. Acad. Sci. U.S.A. 113(13), 3471–3475 (2016).
[Crossref] [PubMed]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

L. X. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. H. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–37 (2014).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(2), 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(2), 517 (2011).
[Crossref] [PubMed]

Bong, V. N.-S.

B. T. Wong, M. Francoeur, V. N.-S. Bong, and M. P. Mengüç, “Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film,” J. Quant. Spectrosc. Radiat. Transf. 143(1), 46–55 (2014).
[Crossref]

Boriskina, S. V.

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6(1), 951–960 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(2), 517 (2011).
[Crossref] [PubMed]

Bright, I. T. J.

X. L. Liu, I. T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(1), 092073 (2014).

Castillo, J.

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Chen, L. X.

Chen, S.

S. Chen, L. Y. Meng, J. W. Hu, and Z. L. Yang, “Fano interference between higher localized and propagatingsurface plasmon modes in nanovoid arrays,” Plasmonics 10(1), 71–76 (2015).
[Crossref]

Chilkoti, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Ciracì, C.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Ding, W. Q.

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Fan, S. H.

Feng, R.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(2), 517 (2011).
[Crossref] [PubMed]

Francoeur, M.

B. T. Wong, M. Francoeur, V. N.-S. Bong, and M. P. Mengüç, “Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film,” J. Quant. Spectrosc. Radiat. Transf. 143(1), 46–55 (2014).
[Crossref]

Gong, J.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Gu, M.

M. M. Hossain, B. H. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(1), 1041–1057 (2015).

Hadad, Y.

Y. Hadad, J. C. Soric, and A. Alu, “Breaking temporal symmetries for emission and absorption,” Proc. Natl. Acad. Sci. U.S.A. 113(13), 3471–3475 (2016).
[Crossref] [PubMed]

Halas, N. J.

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

Hicks, E. C.

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Hill, R. T.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Hong, Y.

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6(1), 951–960 (2012).
[Crossref] [PubMed]

Hossain, M. M.

M. M. Hossain, B. H. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(1), 1041–1057 (2015).

Hu, J. W.

S. Chen, L. Y. Meng, J. W. Hu, and Z. L. Yang, “Fano interference between higher localized and propagatingsurface plasmon modes in nanovoid arrays,” Plasmonics 10(1), 71–76 (2015).
[Crossref]

Jia, B. H.

M. M. Hossain, B. H. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(1), 1041–1057 (2015).

Jia, Z. X.

Jiang, L.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

La Spada, L.

Levin, C. S.

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

Liu, L. H.

Liu, W.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Liu, X.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Liu, X. L.

X. L. Liu, B. Zho, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. 91(1), 062510 (2015).

X. L. Liu, I. T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(1), 092073 (2014).

Meng, H.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Meng, L. Y.

S. Chen, L. Y. Meng, J. W. Hu, and Z. L. Yang, “Fano interference between higher localized and propagatingsurface plasmon modes in nanovoid arrays,” Plasmonics 10(1), 71–76 (2015).
[Crossref]

Mengüç, M. P.

B. T. Wong, M. Francoeur, V. N.-S. Bong, and M. P. Mengüç, “Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film,” J. Quant. Spectrosc. Radiat. Transf. 143(1), 46–55 (2014).
[Crossref]

Mock, J. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

O’Dea, K.

Ormonde, A. D.

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pourmand, M.

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

Qiu, J.

Qiu, X.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Raman, A.

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Reinhard, B. M.

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6(1), 951–960 (2012).
[Crossref] [PubMed]

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
[Crossref] [PubMed]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shuai, Y.

Z. X. Jia, Y. Shuai, S. D. Xu, and H. P. Tan, “Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer,” Opt. Express 23(19), A1096–A1110 (2015).
[Crossref] [PubMed]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensionalgrating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

Smith, D. R.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Soric, J. C.

Y. Hadad, J. C. Soric, and A. Alu, “Breaking temporal symmetries for emission and absorption,” Proc. Natl. Acad. Sci. U.S.A. 113(13), 3471–3475 (2016).
[Crossref] [PubMed]

Tan, H. P.

Tang, Z.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Van Duyne, R. P.

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Vegni, L.

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, D.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Wang, H.

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
[Crossref] [PubMed]

H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
[Crossref] [PubMed]

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

Wang, K. X.

Wang, L.

Wang, L. P.

Y. Yang and L. P. Wang, “Spectrally enhancing near-field radiative transfer between gold gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117(1), 044301 (2016).
[Crossref] [PubMed]

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensionalgrating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

Wang, Q.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wiley, B. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wong, B. T.

B. T. Wong, M. Francoeur, V. N.-S. Bong, and M. P. Mengüç, “Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film,” J. Quant. Spectrosc. Radiat. Transf. 143(1), 46–55 (2014).
[Crossref]

Xu, S. D.

Yang, Y.

Y. Yang and L. P. Wang, “Spectrally enhancing near-field radiative transfer between gold gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117(1), 044301 (2016).
[Crossref] [PubMed]

Yang, Z. L.

S. Chen, L. Y. Meng, J. W. Hu, and Z. L. Yang, “Fano interference between higher localized and propagatingsurface plasmon modes in nanovoid arrays,” Plasmonics 10(1), 71–76 (2015).
[Crossref]

Zhang, M. D.

M. D. Zhang and X. D. Zhang, “Ultrasensitive optical absorption ingraphene based on bound states in thecontinuum,” Sci. Rep. 5(1), 1–6 (2015).

Zhang, X. D.

M. D. Zhang and X. D. Zhang, “Ultrasensitive optical absorption ingraphene based on bound states in thecontinuum,” Sci. Rep. 5(1), 1–6 (2015).

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons inhBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).

X. L. Liu, B. Zho, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. 91(1), 062510 (2015).

X. L. Liu, I. T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(1), 092073 (2014).

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensionalgrating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons inhBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensionalgrating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

Zho, B.

X. L. Liu, B. Zho, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. 91(1), 062510 (2015).

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Zhu, L. X.

Zhu, Z.

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

ACS Nano (2)

W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano 6(1), 951–960 (2012).
[Crossref] [PubMed]

W. Ahn, Y. Hong, S. V. Boriskina, and B. M. Reinhard, “Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks,” ACS Nano 7(5), 4470–4478 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Hong, M. Pourmand, S. V. Boriskina, and B. M. Reinhard, “Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions,” Adv. Mater. 25(1), 115–119 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. M. Hossain, B. H. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(1), 1041–1057 (2015).

Angew. Chem. Int. Ed. Engl. (1)

Z. Zhu, H. Meng, W. Liu, X. Liu, J. Gong, X. Qiu, L. Jiang, D. Wang, and Z. Tang, “Superstructures and SERS properties of gold nanocrystals with different shapes,” Angew. Chem. Int. Ed. Engl. 50(7), 1593–1596 (2011).
[Crossref] [PubMed]

Int. J. Heat Mass Transfer (2)

B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, “Thermophotovoltaic emitters based on a two-dimensionalgrating/thin-film nanostructure,” Int. J. Heat Mass Transfer 67(1), 637–645 (2013).
[Crossref]

B. Zhao and Z. M. Zhang, “Perfect mid-infrared absorption by hybrid phonon-plasmonpolaritons inhBN/metal-grating anisotropic structures,” Int. J. Heat Mass Transfer 106(1), 1025–1034 (2016).

J. Am. Chem. Soc. (1)

H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates,” J. Am. Chem. Soc. 127(43), 14992–14993 (2005).
[Crossref] [PubMed]

J. Heat Transfer (1)

X. L. Liu, I. T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer 136(1), 092073 (2014).

J. Quant. Spectrosc. Radiat. Transf. (2)

B. T. Wong, M. Francoeur, V. N.-S. Bong, and M. P. Mengüç, “Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film,” J. Quant. Spectrosc. Radiat. Transf. 143(1), 46–55 (2014).
[Crossref]

H. Wang and L. P. Wang, “Tailoring thermal radiative properties with film-coupled concave grating metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 158(1), 127–135 (2015).
[Crossref]

Langmuir (1)

A. D. Ormonde, E. C. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy,” Langmuir 20(16), 6927–6931 (2004).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(2), 517 (2011).
[Crossref] [PubMed]

Nature (2)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Phys. Rev. (1)

X. L. Liu, B. Zho, and Z. M. Zhang, “Enhanced near-field thermal radiation and reduced Casimir stiction between doped-Si gratings,” Phys. Rev. 91(1), 062510 (2015).

Phys. Rev. Lett. (3)

Y. Yang and L. P. Wang, “Spectrally enhancing near-field radiative transfer between gold gratings by exciting magnetic polariton in nanometric vacuum gaps,” Phys. Rev. Lett. 117(1), 044301 (2016).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Plasmonics (1)

S. Chen, L. Y. Meng, J. W. Hu, and Z. L. Yang, “Fano interference between higher localized and propagatingsurface plasmon modes in nanovoid arrays,” Plasmonics 10(1), 71–76 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

S. V. Boriskina and B. M. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108(8), 3147–3151 (2011).
[Crossref] [PubMed]

Y. Hadad, J. C. Soric, and A. Alu, “Breaking temporal symmetries for emission and absorption,” Proc. Natl. Acad. Sci. U.S.A. 113(13), 3471–3475 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

M. D. Zhang and X. D. Zhang, “Ultrasensitive optical absorption ingraphene based on bound states in thecontinuum,” Sci. Rep. 5(1), 1–6 (2015).

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill Education, 2007).

Supplementary Material (6)

NameDescription
» Visualization 1: MPG (852 KB)      Visualization of Fig.9 a
» Visualization 2: MPG (836 KB)      Visualization of Fig.9 b
» Visualization 3: MPG (598 KB)      Visualization of Fig.9 c
» Visualization 4: MPG (828 KB)      Visualization of Fig.9 d
» Visualization 5: MPG (722 KB)      Visualization of Fig.9 e
» Visualization 6: MPG (490 KB)      Visualization of Fig.9 f

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) A schematic for the nanoparticle-crystal with cubic and hexagonal pattern. (b) Illustration of FDTD method and calculation of radiative property. (c) Spectral normal absorptivity for the 4 kinds of nanoparticle-crystals. (d) Spectral absorptivity for cubic nanoparticle-crystal with different size of meshes. (e) Spectral absorptivity for hexagonal and cubic double layer nanoparticle-crystal.

Fig. 2
Fig. 2

Radiative properties for the nanoparticle-crystal with (a) Au, (b) SiO2, (c) W as supporting layer/ substrate.(d) Spectral absorptivity of monolayer nanoparticle-crystal with various kinds of supporting layer.

Fig. 3
Fig. 3

Spectral normal abosrptivity for free-standing nanoparticle-crystal as a function of (a) polarization angle θ, with φ=0deg , (b) incident angle φ, with θ=0deg . Optical response transition for (c) mismatched top layer nanoparticles' diameter and (d) period.

Fig. 4
Fig. 4

Normalized spectral near field intensity for free-standing nanoparticle-crystal with (a) θ=0deg , φ=0deg . (b) θ=0deg , φ=20deg . (c) θ=30deg , φ=0deg . (d) Schematic of the monitor location in the nanoparticle-crystal.

Fig. 5
Fig. 5

Schematics of the 5 crossing sections employed to observe electromagnetic energy density.

Fig. 6
Fig. 6

Electromagnetic energy density distribution within various crossing sections and wavelengths at 1.62μm

Fig. 7
Fig. 7

Electromagnetic energy density distribution within various crossing sections and wavelengths at 1.75μm.

Fig. 8
Fig. 8

Electromagnetic energy density distribution within various crossing sections and wavelengths at 2.19μm.

Fig. 9
Fig. 9

Field distributions within the structure. The contours indicate the magnetic field distributions, the arrows represent for electric vectors. Visualizations of every crossing distribution can be seen in the supplemental material Visualization 1, Visualization 2, Visualization 3, Visualization 4, Visualization 5, and Visualization 6 corresponding to Fig. 9(a)-9(f).

Fig. 10
Fig. 10

(a) Schematic of the three oscillators model. (b) Optical property obtained from FDTD method and analytical model. (c) Phase of the oscillator 2 as a function of energy.

Tables (1)

Tables Icon

Table 1 Value of the spectral |Emax| / E0 for different monitors and incident geometric features.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

w= 1 2 [| E ε E |+| H μ H |]
w 0 = 1 2 [| E 0 ε E 0 |+| H 0 μ H 0 |]
| k spp |= ω c 0 ε 1 ε 2 ε 1 + ε 2
k || =( k x,inc + 2πm P x ) x ^ +( k y,inc + 2πn P y ) y ^
x .. 1 + ω 1 2 x 1 v 12 x 2 =a e iωt x .. 2 +γ x . 2 + ω 2 2 x 2 v 12 x 1 v 23 x 3 =0 x .. 3 + ω 3 2 x 3 v 23 x 3 =a e iωt
c 2 = v 12 /( ω 1 2 ω 2 )+ v 23 /( ω 3 2 ω 2 ) ω 2 2 ω 2 +iγω v 12 2 /( ω 1 2 ω 2 )+ v 23 2 /( ω 3 2 ω 2 ) a

Metrics