Abstract

We investigated the relationships between inherent and apparent optical properties (IOP and AOP, respectively) and suspended sediment concentrations (SSC) in the main Amazonian river waters. In situ measurements of SSC, remote sensing reflectance (Rrs), the diffuse light attenuation coefficient (Kd) and the total and non-algal particle (NAP) absorption coefficients (aTOT and aNAP, respectively) were conducted during three sampling trips along different streams of the Amazon River catchment (104 stations). The size distribution and chemical characteristics of the suspended sediment were also determined for 85 stations. We show that the particle size distribution (PSD) in the river water is best described by a segmented Junge power law distribution with a smaller slope value for the smallest particles (J1 = 2.4) and a larger slope value (J2 = 4.1) for the largest particles (> 10 µm). A strong relationship was found between AOPs and IOPs and SSC when the entire data set was considered. However, for the Madeira River, the primary Amazon River tributary in terms of suspended sediment discharge, a significant dispersion was detected for the Rrs – SSC relationship but not for the Kd – SSC relationship. This dispersion has been shown by a previous study, using MODIS data, to display a seasonal pattern, which we investigated in this study using Mie modeling calibrated with suspended sediment characteristics. In the Madeira River, suspended sediment had a finer distribution size and a different mineralogy (e.g., a greater smectite content and a lower kaolinite content) during the rising water stage. Spectral variations of the imaginary part n'(λ) of the refraction index also showed significant differences during the rising water stage. In contrast, other streams of the Amazon basin had very stable properties with respect to granulometry and mineralogy. Model simulations made possible to reproduce both field and satellite observations, showing that the Rrs hysteresis observed in the Madeira River in the near infrared was mainly due to n'(λ) seasonal variations, leading to a decrease of absorption during the rising water stage. Kd was shown to remain stable because of its strong dependency on scattering processes. The model was used to further understand how suspended sediment size distribution and refraction index drive the IOPs in large rivers: n'(λ) variations were shown to control primarily the reflectance variability; Rrs(850) presented limited variations as a function of PSD in the range typical of large rivers (J1 < 3) although it remained sensitive to particle mineralogical composition; Rrs(670) showed the opposite behavior with a higher sensitivity to PSD variation for coarser PSD. Finally, we demonstrate that the use of the Rrs ratio between the red and infrared channels allowed a reduction of the Rrs sensitivity in all cases, by an average of 50% with respect to changes in the mineral composition or size distribution of suspended sediment. In particular, the Rrs ratio varied by less than 5% for PSD representative of surface river waters.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Particle size distribution of river-suspended sediments determined by in situ measured remote-sensing reflectance

Yuanzhi Zhang, Zhaojun Huang, Chuqun Chen, Yijun He, and Tingchen Jiang
Appl. Opt. 54(20) 6367-6376 (2015)

Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling

David Doxaran, Nagur Cherukuru, and Samantha J. Lavender
Appl. Opt. 45(10) 2310-2324 (2006)

On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain

Zhongping Lee, Shaoling Shang, Gong Lin, Jun Chen, and David Doxaran
Appl. Opt. 55(7) 1738-1750 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. A. Allen, “From landscapes into geological history,” Nature 451(7176), 274–276 (2008).
    [Crossref] [PubMed]
  2. A. J. Horowitz, “Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes,” Sci. Total Environ. 400(1-3), 315–343 (2008).
    [Crossref] [PubMed]
  3. J. P. M. Syvitski, C. J. Vörösmarty, A. J. Kettner, and P. Green, “Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean,” Science 308(5720), 376–380 (2005).
    [Crossref] [PubMed]
  4. J. D. Milliman and R. H. Meade, “World-wide delivery of river sediment to the oceans,” J. Geol. 91(1), 1–21 (1983).
    [Crossref]
  5. S. R. Gislason, E. H. Oelkers, and Á. Snorrason, “Role of river-suspended material in the global carbon cycle,” Geology 34(1), 49–52 (2006).
    [Crossref]
  6. B. M. Fekete and C. J. Vörösmarty, “The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements,” in Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off Meeting Held in Brasilia, 20–22 November 2002). IAHS Publication (2002), Vol. 349.
  7. J. C. Ritchie and C. M. Cooper, “Comparison of measured suspended sediment concentrations with suspended sediment concentrations estimated from Landsat MSS data,” Int. J. Remote Sens. 9(3), 379–387 (1988).
    [Crossref]
  8. P. Forget and S. Ouillon, “Surface suspended matter off the Rhône river mouth from visible satellite imagery,” Oceanol. Acta 21(6), 739–749 (1998).
    [Crossref]
  9. P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
    [Crossref] [PubMed]
  10. V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
    [Crossref]
  11. H. Kobayashi, M. Toratani, S. Matsumura, A. Siripong, T. Lirdwitayaprasit, and P. Jintasaeranee, “Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters,” Int. J. Remote Sens. 32(23), 8393–8420 (2011).
    [Crossref]
  12. L. Cai, D. Tang, and C. Li, “An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data,” Adv. Space Res. 56(2), 293–303 (2015).
    [Crossref]
  13. S. Chen, L. Han, X. Chen, D. Li, L. Sun, and Y. Li, “Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method,” ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
    [Crossref]
  14. A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
    [Crossref]
  15. B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
    [Crossref]
  16. J. A. Harrington, F. R. Schiebe, and J. F. Nix, “Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data,” Remote Sens. Environ. 39(1), 15–27 (1992).
    [Crossref]
  17. K. Kallio, J. Pulliainen, and P. Ylöstalo, “MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semianalytical and empirical algorithms,” Geophysica 41, 31–55 (2005).
  18. R. Ma, X. Ma, and J. Dai, “Hyperspectral feature analysis of chlorophyll a and suspended solids using field measurements from Taihu Lake, eastern China,” Hydrol. Sci. J. 52(4), 808–824 (2007).
    [Crossref]
  19. J. R. Stroud, B. M. Lesht, D. J. Schwab, D. Beletsky, and M. L. Stein, “Assimilation of satellite images into a sediment transport model of Lake Michigan,” Water Resour. Res. 45(2), W02419 (2009).
    [Crossref]
  20. H. Vinciková, J. Hanuš, and L. Pechar, “Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands,” Wetlands Ecol. Manage. 23(5), 933–946 (2015).
    [Crossref]
  21. D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
    [Crossref]
  22. C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
    [Crossref]
  23. Z. Han, Y.-Q. Jin, and C.-X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens. 27(19), 4329–4336 (2006).
    [Crossref]
  24. J. Chen, E. D’Sa, T. Cui, and X. Zhang, “A semi-analytical total suspended sediment retrieval model in turbid coastal waters: a case study in Changjiang River Estuary,” Opt. Express 21(11), 13018–13031 (2013).
    [Crossref] [PubMed]
  25. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
    [Crossref]
  26. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
    [Crossref]
  27. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
    [Crossref]
  28. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
    [Crossref]
  29. H. Loisel, X. Mériaux, J.-F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52(2), 739–752 (2007).
    [Crossref]
  30. D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
    [Crossref]
  31. S. Budhiman, M. Suhyb Salama, Z. Vekerdy, and W. Verhoef, “Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion,” ISPRS J. Photogramm. Remote Sens. 68, 157–169 (2012).
    [Crossref]
  32. R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
    [Crossref]
  33. M. Goulding, R. Barthem, and E. Ferreira, “The Smithsonian atlas of the Amazon,” Smithsonian Books, Washington and London, USA and UK. (2003).
  34. J. Callède, G. Cochonneau, F. V. Alves, J.-L. Guyot, V. S. Guimarães, and E. De Oliveira, “Les apports en eau de l’Amazone à l’Océan Atlantique,” Revue des sciences de l’eau 23(3), 247 (2010).
    [Crossref]
  35. J. M. Martinez, J. L. Guyot, N. Filizola, and F. Sondag, “Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data,” Catena 79(3), 257–264 (2009).
    [Crossref]
  36. J. E. Richey, C. Nobre, and C. Deser, “Amazon River discharge and climate variability: 1903 to 1985,” Science 246(4926), 101–103 (1989).
    [Crossref] [PubMed]
  37. J. A. Marengo, “Variations and change in South American streamflow,” Clim. Change 31(1), 99–117 (1995).
    [Crossref]
  38. J. Callède, J. L. Guyot, J. Ronchail, Y. L’Hôte, H. Niel, and E. de Oliveira, “Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999,” Hydrol. Sci. J. 49(1), 85–97 (2004).
    [Crossref]
  39. J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
    [Crossref]
  40. N. Filizola and J. L. Guyot, “Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set,” Hydrol. Processes 23(22), 3207–3215 (2009).
    [Crossref]
  41. M. Molinier, J. L. Guyot, J. Callède, E. De Oliveira, V. S. Guimarães, K. J. Cudo, and M. C. De Aquino, “Hidrologia de la cuenca amazonica Brasileira: HIBAM primeros resultados sobre la cuenca del rio Madeira - términos del balance hídrico. Metodologia,” 155–164 (1993).
  42. J. L. Guyot, J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillet, and C. Lagane, “Clay mineral composition of river sediments in the Amazon Basin,” Catena 71(2), 340–356 (2007).
    [Crossref]
  43. H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75(15), 2822–2830 (1970).
    [Crossref]
  44. C. E. Junge, “Air chemistry and radioactivity,” 1963 382 (1963).
  45. S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).
    [Crossref] [PubMed]
  46. A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
    [Crossref]
  47. J. E. Harris, “Characterization of suspended matter in the Gulf of Mexico—II Particle size analysis of suspended matter from deep water,” Deep-Sea Res. 24(11), 1055–1061 (1977).
    [Crossref]
  48. A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49(1), 177–202 (1991).
    [Crossref]
  49. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic press, 1994).
  50. J.-M. Martinez, R. Espinoza-Villar, E. Armijos, and L. Silva Moreira, “The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter,” J. Geophys. Res.: Earth Surface 120, 1274–1287 (2015).
  51. P. Moreira-Turcq, P. Seyler, J. L. Guyot, and H. Etcheber, “Exportation of organic carbon from the Amazon River and its main tributaries,” Hydrol. Processes 17(7), 1329–1344 (2003).
    [Crossref]
  52. P. Forget, S. Ouillon, F. Lahet, and P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68(3), 264–272 (1999).
    [Crossref]
  53. J.-P. Eberhart, Analyse Structurale et Chimique Des Matériaux (Dunod, 1989).
  54. L. Kaufman and P. Rousseeuw, Clustering by Means of Medoids (North-Holland, 1987).
  55. L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
    [Crossref]
  56. S. Pinet, B. Lartiges, J.-M. Martinez, and S. Ouillon, “From SEM analysis to the mineralogical composition of suspended sediments in large river basin,” in preparation.
  57. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
    [Crossref] [PubMed]
  58. J. T. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt. 36(24), 6123–6128 (1997).
    [Crossref] [PubMed]
  59. R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39(33), 6118–6127 (2000).
    [Crossref] [PubMed]
  60. R. Röttgers, W. Schönfeld, P.-R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
    [Crossref] [PubMed]
  61. D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
    [Crossref]
  62. J. Wollschläger, M. Grunwald, R. Röttgers, and W. Petersen, “Flow-through PSICAM: a new approach for determining water constituents absorption continuously,” Ocean Dyn. 63(7), 761–775 (2013).
    [Crossref]
  63. J. Wollschläger, R. Röttgers, W. Petersen, and K. H. Wiltshire, “Performance of absorption coefficient measurements for the in situ determination of chlorophyll-a and total suspended matter,” J. Exp. Mar. Biol. Ecol. 453, 138–147 (2014).
    [Crossref]
  64. R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
    [Crossref] [PubMed]
  65. F. Eyrolle, M. F. Benedetti, J. Y. Benaim, and D. Fevrier, “The distributions of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments,” Geochim. Cosmochim. Acta 60(19), 3643–3656 (1996).
    [Crossref]
  66. O. S. Pokrovsky and J. Schott, “Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia),” Chem. Geol. 190(1-4), 141–179 (2002).
    [Crossref]
  67. W. De Rooij and C. Van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).
  68. H. C. Van de Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).
  69. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991).
    [Crossref]
  70. N. G. Jerlov, Marine Optics (Elsevier, 1976), Vol. 14.
  71. J. T. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36(3), 455–467 (1991).
    [Crossref]
  72. H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14(2), 417–427 (1975).
    [Crossref] [PubMed]
  73. J. T. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994).
  74. J.-M. Froidefond and S. Ouillon, “Introducing a mini-catamaran to perform reflectance measurements above and below the water surface,” Opt. Express 13(3), 926–936 (2005).
    [Crossref] [PubMed]
  75. H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
    [Crossref]
  76. P. Kerr, “Optical mineralogy, 492 pp,” (1977).
  77. E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
    [Crossref]
  78. M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
    [Crossref]
  79. F. Peng and S. W. Effler, “Spectral absorption properties of mineral particles in western Lake Erie: Insights from individual particle analysis,” Limnol. Oceanogr. 58(5), 1775–1789 (2013).
    [Crossref]
  80. C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
    [Crossref]
  81. R. Ma, J. Tang, J. Dai, Y. Zhang, and Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
    [Crossref]
  82. D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
    [Crossref]
  83. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
    [Crossref]
  84. Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).
    [Crossref] [PubMed]
  85. J. Woodward and D. Walling, “Composite suspended sediment particles in river systems: their incidence, dynamics and physical characteristics,” Hydrol. Processes 21(26), 3601–3614 (2007).
    [Crossref]
  86. D. Walling and P. Moorehead, “The particle size characteristics of fluvial suspended sediment: an overview,” in Sediment/Water Interactions (Springer, 1989), pp. 125–149.
  87. E. M. Latrubesse, “Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers,” Geomorphology 101(1-2), 130–145 (2008).
    [Crossref]
  88. H. Rouse,
  89. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
    [Crossref]
  90. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
    [Crossref]
  91. F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007).
    [Crossref] [PubMed]
  92. M. Boller and R. Kaegi, Characterization of Aquatic Particles (IWA Publishing, London, UK, 2011).
  93. J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
    [Crossref] [PubMed]
  94. D. Lide,
  95. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
    [Crossref]
  96. S. J. Chipera and D. L. Bish, “Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses,” Clays Clay Miner. 49(5), 398–409 (2001).
    [Crossref]
  97. G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
    [Crossref]
  98. J. Bouchez, J. Gaillardet, C. France-Lanord, L. Maurice, and P. Dutra-Maia, “Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles,” Geochem. Geophys. Geosyst. 12(3), Q03008 (2011).
    [Crossref]
  99. M. Guerrero, N. Rüther, R. Szupiany, S. Haun, S. Baranya, and F. Latosinski, “The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability,” Water 8(1), 13 (2016).
    [Crossref]
  100. D. E. Walling, P. N. Owens, B. D. Waterfall, G. J. Leeks, and P. D. Wass, “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK,” Sci. Total Environ. 251-252, 205–222 (2000).
    [Crossref] [PubMed]

2016 (3)

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).
[Crossref] [PubMed]

M. Guerrero, N. Rüther, R. Szupiany, S. Haun, S. Baranya, and F. Latosinski, “The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability,” Water 8(1), 13 (2016).
[Crossref]

2015 (5)

L. Cai, D. Tang, and C. Li, “An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data,” Adv. Space Res. 56(2), 293–303 (2015).
[Crossref]

S. Chen, L. Han, X. Chen, D. Li, L. Sun, and Y. Li, “Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method,” ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
[Crossref]

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

H. Vinciková, J. Hanuš, and L. Pechar, “Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands,” Wetlands Ecol. Manage. 23(5), 933–946 (2015).
[Crossref]

J.-M. Martinez, R. Espinoza-Villar, E. Armijos, and L. Silva Moreira, “The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter,” J. Geophys. Res.: Earth Surface 120, 1274–1287 (2015).

2014 (2)

J. Wollschläger, R. Röttgers, W. Petersen, and K. H. Wiltshire, “Performance of absorption coefficient measurements for the in situ determination of chlorophyll-a and total suspended matter,” J. Exp. Mar. Biol. Ecol. 453, 138–147 (2014).
[Crossref]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

2013 (5)

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

J. Wollschläger, M. Grunwald, R. Röttgers, and W. Petersen, “Flow-through PSICAM: a new approach for determining water constituents absorption continuously,” Ocean Dyn. 63(7), 761–775 (2013).
[Crossref]

F. Peng and S. W. Effler, “Spectral absorption properties of mineral particles in western Lake Erie: Insights from individual particle analysis,” Limnol. Oceanogr. 58(5), 1775–1789 (2013).
[Crossref]

J. Chen, E. D’Sa, T. Cui, and X. Zhang, “A semi-analytical total suspended sediment retrieval model in turbid coastal waters: a case study in Changjiang River Estuary,” Opt. Express 21(11), 13018–13031 (2013).
[Crossref] [PubMed]

R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
[Crossref]

2012 (1)

S. Budhiman, M. Suhyb Salama, Z. Vekerdy, and W. Verhoef, “Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion,” ISPRS J. Photogramm. Remote Sens. 68, 157–169 (2012).
[Crossref]

2011 (2)

H. Kobayashi, M. Toratani, S. Matsumura, A. Siripong, T. Lirdwitayaprasit, and P. Jintasaeranee, “Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters,” Int. J. Remote Sens. 32(23), 8393–8420 (2011).
[Crossref]

J. Bouchez, J. Gaillardet, C. France-Lanord, L. Maurice, and P. Dutra-Maia, “Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles,” Geochem. Geophys. Geosyst. 12(3), Q03008 (2011).
[Crossref]

2010 (2)

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[Crossref]

J. Callède, G. Cochonneau, F. V. Alves, J.-L. Guyot, V. S. Guimarães, and E. De Oliveira, “Les apports en eau de l’Amazone à l’Océan Atlantique,” Revue des sciences de l’eau 23(3), 247 (2010).
[Crossref]

2009 (6)

J. M. Martinez, J. L. Guyot, N. Filizola, and F. Sondag, “Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data,” Catena 79(3), 257–264 (2009).
[Crossref]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

J. R. Stroud, B. M. Lesht, D. J. Schwab, D. Beletsky, and M. L. Stein, “Assimilation of satellite images into a sediment transport model of Lake Michigan,” Water Resour. Res. 45(2), W02419 (2009).
[Crossref]

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

N. Filizola and J. L. Guyot, “Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set,” Hydrol. Processes 23(22), 3207–3215 (2009).
[Crossref]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[Crossref]

2008 (4)

E. M. Latrubesse, “Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers,” Geomorphology 101(1-2), 130–145 (2008).
[Crossref]

A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
[Crossref]

P. A. Allen, “From landscapes into geological history,” Nature 451(7176), 274–276 (2008).
[Crossref] [PubMed]

A. J. Horowitz, “Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes,” Sci. Total Environ. 400(1-3), 315–343 (2008).
[Crossref] [PubMed]

2007 (7)

R. Ma, X. Ma, and J. Dai, “Hyperspectral feature analysis of chlorophyll a and suspended solids using field measurements from Taihu Lake, eastern China,” Hydrol. Sci. J. 52(4), 808–824 (2007).
[Crossref]

H. Loisel, X. Mériaux, J.-F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52(2), 739–752 (2007).
[Crossref]

J. L. Guyot, J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillet, and C. Lagane, “Clay mineral composition of river sediments in the Amazon Basin,” Catena 71(2), 340–356 (2007).
[Crossref]

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[Crossref]

J. Woodward and D. Walling, “Composite suspended sediment particles in river systems: their incidence, dynamics and physical characteristics,” Hydrol. Processes 21(26), 3601–3614 (2007).
[Crossref]

F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007).
[Crossref] [PubMed]

2006 (3)

R. Ma, J. Tang, J. Dai, Y. Zhang, and Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[Crossref]

Z. Han, Y.-Q. Jin, and C.-X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens. 27(19), 4329–4336 (2006).
[Crossref]

S. R. Gislason, E. H. Oelkers, and Á. Snorrason, “Role of river-suspended material in the global carbon cycle,” Geology 34(1), 49–52 (2006).
[Crossref]

2005 (4)

J. P. M. Syvitski, C. J. Vörösmarty, A. J. Kettner, and P. Green, “Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean,” Science 308(5720), 376–380 (2005).
[Crossref] [PubMed]

K. Kallio, J. Pulliainen, and P. Ylöstalo, “MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semianalytical and empirical algorithms,” Geophysica 41, 31–55 (2005).

J.-M. Froidefond and S. Ouillon, “Introducing a mini-catamaran to perform reflectance measurements above and below the water surface,” Opt. Express 13(3), 926–936 (2005).
[Crossref] [PubMed]

R. Röttgers, W. Schönfeld, P.-R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
[Crossref] [PubMed]

2004 (6)

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
[Crossref]

J. Callède, J. L. Guyot, J. Ronchail, Y. L’Hôte, H. Niel, and E. de Oliveira, “Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999,” Hydrol. Sci. J. 49(1), 85–97 (2004).
[Crossref]

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).
[Crossref] [PubMed]

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

2003 (3)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
[Crossref]

P. Moreira-Turcq, P. Seyler, J. L. Guyot, and H. Etcheber, “Exportation of organic carbon from the Amazon River and its main tributaries,” Hydrol. Processes 17(7), 1329–1344 (2003).
[Crossref]

2002 (3)

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

O. S. Pokrovsky and J. Schott, “Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia),” Chem. Geol. 190(1-4), 141–179 (2002).
[Crossref]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

2001 (5)

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[Crossref]

L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[Crossref]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

S. J. Chipera and D. L. Bish, “Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses,” Clays Clay Miner. 49(5), 398–409 (2001).
[Crossref]

2000 (2)

D. E. Walling, P. N. Owens, B. D. Waterfall, G. J. Leeks, and P. D. Wass, “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK,” Sci. Total Environ. 251-252, 205–222 (2000).
[Crossref] [PubMed]

R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39(33), 6118–6127 (2000).
[Crossref] [PubMed]

1999 (3)

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[Crossref] [PubMed]

P. Forget, S. Ouillon, F. Lahet, and P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68(3), 264–272 (1999).
[Crossref]

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

1998 (1)

P. Forget and S. Ouillon, “Surface suspended matter off the Rhône river mouth from visible satellite imagery,” Oceanol. Acta 21(6), 739–749 (1998).
[Crossref]

1997 (1)

1996 (2)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[Crossref]

F. Eyrolle, M. F. Benedetti, J. Y. Benaim, and D. Fevrier, “The distributions of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments,” Geochim. Cosmochim. Acta 60(19), 3643–3656 (1996).
[Crossref]

1995 (2)

J. A. Marengo, “Variations and change in South American streamflow,” Clim. Change 31(1), 99–117 (1995).
[Crossref]

J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
[Crossref] [PubMed]

1992 (1)

J. A. Harrington, F. R. Schiebe, and J. F. Nix, “Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data,” Remote Sens. Environ. 39(1), 15–27 (1992).
[Crossref]

1991 (3)

A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49(1), 177–202 (1991).
[Crossref]

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991).
[Crossref]

J. T. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36(3), 455–467 (1991).
[Crossref]

1989 (1)

J. E. Richey, C. Nobre, and C. Deser, “Amazon River discharge and climate variability: 1903 to 1985,” Science 246(4926), 101–103 (1989).
[Crossref] [PubMed]

1988 (1)

J. C. Ritchie and C. M. Cooper, “Comparison of measured suspended sediment concentrations with suspended sediment concentrations estimated from Landsat MSS data,” Int. J. Remote Sens. 9(3), 379–387 (1988).
[Crossref]

1984 (1)

W. De Rooij and C. Van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).

1983 (1)

J. D. Milliman and R. H. Meade, “World-wide delivery of river sediment to the oceans,” J. Geol. 91(1), 1–21 (1983).
[Crossref]

1977 (2)

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

J. E. Harris, “Characterization of suspended matter in the Gulf of Mexico—II Particle size analysis of suspended matter from deep water,” Deep-Sea Res. 24(11), 1055–1061 (1977).
[Crossref]

1975 (1)

1970 (1)

H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75(15), 2822–2830 (1970).
[Crossref]

Aas, E.

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[Crossref]

Ahn, Y.-H.

A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49(1), 177–202 (1991).
[Crossref]

Aiken, J.

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

Allen, P. A.

P. A. Allen, “From landscapes into geological history,” Nature 451(7176), 274–276 (2008).
[Crossref] [PubMed]

Alves, F. V.

J. Callède, G. Cochonneau, F. V. Alves, J.-L. Guyot, V. S. Guimarães, and E. De Oliveira, “Les apports en eau de l’Amazone à l’Océan Atlantique,” Revue des sciences de l’eau 23(3), 247 (2010).
[Crossref]

Armijos, E.

J.-M. Martinez, R. Espinoza-Villar, E. Armijos, and L. Silva Moreira, “The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter,” J. Geophys. Res.: Earth Surface 120, 1274–1287 (2015).

Babin, M.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[Crossref]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
[Crossref]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Bader, H.

H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75(15), 2822–2830 (1970).
[Crossref]

Baranya, S.

M. Guerrero, N. Rüther, R. Szupiany, S. Haun, S. Baranya, and F. Latosinski, “The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability,” Water 8(1), 13 (2016).
[Crossref]

Baratange, F.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

Barnard, A. H.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Beletsky, D.

J. R. Stroud, B. M. Lesht, D. J. Schwab, D. Beletsky, and M. L. Stein, “Assimilation of satellite images into a sediment transport model of Lake Michigan,” Water Resour. Res. 45(2), W02419 (2009).
[Crossref]

Benaim, J. Y.

F. Eyrolle, M. F. Benedetti, J. Y. Benaim, and D. Fevrier, “The distributions of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments,” Geochim. Cosmochim. Acta 60(19), 3643–3656 (1996).
[Crossref]

Benedetti, M. F.

F. Eyrolle, M. F. Benedetti, J. Y. Benaim, and D. Fevrier, “The distributions of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments,” Geochim. Cosmochim. Acta 60(19), 3643–3656 (1996).
[Crossref]

Berthon, J.-F.

H. Loisel, X. Mériaux, J.-F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52(2), 739–752 (2007).
[Crossref]

Bish, D. L.

S. J. Chipera and D. L. Bish, “Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses,” Clays Clay Miner. 49(5), 398–409 (2001).
[Crossref]

Boaventura, G. R.

J. L. Guyot, J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillet, and C. Lagane, “Clay mineral composition of river sediments in the Amazon Basin,” Catena 71(2), 340–356 (2007).
[Crossref]

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

Boss, E.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Bouchez, J.

J. Bouchez, J. Gaillardet, C. France-Lanord, L. Maurice, and P. Dutra-Maia, “Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles,” Geochem. Geophys. Geosyst. 12(3), Q03008 (2011).
[Crossref]

Brando, V. E.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
[Crossref]

Breiman, L.

L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[Crossref]

Bricaud, A.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Broche, P.

P. Forget, S. Ouillon, F. Lahet, and P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68(3), 264–272 (1999).
[Crossref]

Brock, J. C.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Brown, O. B.

Bryère, P.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Budhiman, S.

S. Budhiman, M. Suhyb Salama, Z. Vekerdy, and W. Verhoef, “Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion,” ISPRS J. Photogramm. Remote Sens. 68, 157–169 (2012).
[Crossref]

Buffle, J.

J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
[Crossref] [PubMed]

Cai, L.

L. Cai, D. Tang, and C. Li, “An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data,” Adv. Space Res. 56(2), 293–303 (2015).
[Crossref]

Callède, J.

J. Callède, G. Cochonneau, F. V. Alves, J.-L. Guyot, V. S. Guimarães, and E. De Oliveira, “Les apports en eau de l’Amazone à l’Océan Atlantique,” Revue des sciences de l’eau 23(3), 247 (2010).
[Crossref]

J. Callède, J. L. Guyot, J. Ronchail, Y. L’Hôte, H. Niel, and E. de Oliveira, “Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999,” Hydrol. Sci. J. 49(1), 85–97 (2004).
[Crossref]

Candiani, G.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

Castaing, P.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Chami, M.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

Chen, J.

Chen, S.

S. Chen, L. Han, X. Chen, D. Li, L. Sun, and Y. Li, “Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method,” ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
[Crossref]

Chen, X.

S. Chen, L. Han, X. Chen, D. Li, L. Sun, and Y. Li, “Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method,” ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
[Crossref]

Chen, Z.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Chipera, S. J.

S. J. Chipera and D. L. Bish, “Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses,” Clays Clay Miner. 49(5), 398–409 (2001).
[Crossref]

Claustre, H.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Clayton, T. D.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Cochonneau, G.

J. Callède, G. Cochonneau, F. V. Alves, J.-L. Guyot, V. S. Guimarães, and E. De Oliveira, “Les apports en eau de l’Amazone à l’Océan Atlantique,” Revue des sciences de l’eau 23(3), 247 (2010).
[Crossref]

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

Cooper, C. M.

J. C. Ritchie and C. M. Cooper, “Comparison of measured suspended sediment concentrations with suspended sediment concentrations estimated from Landsat MSS data,” Int. J. Remote Sens. 9(3), 379–387 (1988).
[Crossref]

Cui, T.

D’Sa, E.

Dai, J.

R. Ma, X. Ma, and J. Dai, “Hyperspectral feature analysis of chlorophyll a and suspended solids using field measurements from Taihu Lake, eastern China,” Hydrol. Sci. J. 52(4), 808–824 (2007).
[Crossref]

R. Ma, J. Tang, J. Dai, Y. Zhang, and Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[Crossref]

Davis, C. O.

de Oliveira, E.

R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
[Crossref]

J. Callède, G. Cochonneau, F. V. Alves, J.-L. Guyot, V. S. Guimarães, and E. De Oliveira, “Les apports en eau de l’Amazone à l’Océan Atlantique,” Revue des sciences de l’eau 23(3), 247 (2010).
[Crossref]

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

J. Callède, J. L. Guyot, J. Ronchail, Y. L’Hôte, H. Niel, and E. de Oliveira, “Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999,” Hydrol. Sci. J. 49(1), 85–97 (2004).
[Crossref]

De Rooij, W.

W. De Rooij and C. Van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).

Dekker, A. G.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
[Crossref]

Deser, C.

J. E. Richey, C. Nobre, and C. Deser, “Amazon River discharge and climate variability: 1903 to 1985,” Science 246(4926), 101–103 (1989).
[Crossref] [PubMed]

Dessailly, D.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Doerffer, R.

Dogliotti, A. I.

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

Douillet, P.

A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
[Crossref]

Downes, T. V.

Doxaran, D.

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).
[Crossref] [PubMed]

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Dubovik, O.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

Dutra-Maia, P.

J. Bouchez, J. Gaillardet, C. France-Lanord, L. Maurice, and P. Dutra-Maia, “Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles,” Geochem. Geophys. Geosyst. 12(3), Q03008 (2011).
[Crossref]

Eck, T. F.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

Effler, S. W.

F. Peng and S. W. Effler, “Spectral absorption properties of mineral particles in western Lake Erie: Insights from individual particle analysis,” Limnol. Oceanogr. 58(5), 1775–1789 (2013).
[Crossref]

F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007).
[Crossref] [PubMed]

Eloheimo, K.

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

Espinoza Villar, J. C.

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

Espinoza-Villar, R.

J.-M. Martinez, R. Espinoza-Villar, E. Armijos, and L. Silva Moreira, “The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter,” J. Geophys. Res.: Earth Surface 120, 1274–1287 (2015).

Etcheber, H.

P. Moreira-Turcq, P. Seyler, J. L. Guyot, and H. Etcheber, “Exportation of organic carbon from the Amazon River and its main tributaries,” Hydrol. Processes 17(7), 1329–1344 (2003).
[Crossref]

Eyrolle, F.

F. Eyrolle, M. F. Benedetti, J. Y. Benaim, and D. Fevrier, “The distributions of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments,” Geochim. Cosmochim. Acta 60(19), 3643–3656 (1996).
[Crossref]

Fernandez, J. M.

A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
[Crossref]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Fevrier, D.

F. Eyrolle, M. F. Benedetti, J. Y. Benaim, and D. Fevrier, “The distributions of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments,” Geochim. Cosmochim. Acta 60(19), 3643–3656 (1996).
[Crossref]

Filizola, N.

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

N. Filizola and J. L. Guyot, “Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set,” Hydrol. Processes 23(22), 3207–3215 (2009).
[Crossref]

J. M. Martinez, J. L. Guyot, N. Filizola, and F. Sondag, “Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data,” Catena 79(3), 257–264 (2009).
[Crossref]

Forget, P.

P. Forget, S. Ouillon, F. Lahet, and P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68(3), 264–272 (1999).
[Crossref]

P. Forget and S. Ouillon, “Surface suspended matter off the Rhône river mouth from visible satellite imagery,” Oceanol. Acta 21(6), 739–749 (1998).
[Crossref]

Fraizy, P.

R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
[Crossref]

France-Lanord, C.

J. Bouchez, J. Gaillardet, C. France-Lanord, L. Maurice, and P. Dutra-Maia, “Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles,” Geochem. Geophys. Geosyst. 12(3), Q03008 (2011).
[Crossref]

Froidefond, J.-M.

A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
[Crossref]

J.-M. Froidefond and S. Ouillon, “Introducing a mini-catamaran to perform reflectance measurements above and below the water surface,” Opt. Express 13(3), 926–936 (2005).
[Crossref] [PubMed]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Gaillardet, J.

J. Bouchez, J. Gaillardet, C. France-Lanord, L. Maurice, and P. Dutra-Maia, “Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles,” Geochem. Geophys. Geosyst. 12(3), Q03008 (2011).
[Crossref]

Gentili, B.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

Giardino, C.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

Gislason, S. R.

S. R. Gislason, E. H. Oelkers, and Á. Snorrason, “Role of river-suspended material in the global carbon cycle,” Geology 34(1), 49–52 (2006).
[Crossref]

Gordon, H. R.

Green, P.

J. P. M. Syvitski, C. J. Vörösmarty, A. J. Kettner, and P. Green, “Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean,” Science 308(5720), 376–380 (2005).
[Crossref] [PubMed]

Grunwald, M.

J. Wollschläger, M. Grunwald, R. Röttgers, and W. Petersen, “Flow-through PSICAM: a new approach for determining water constituents absorption continuously,” Ocean Dyn. 63(7), 761–775 (2013).
[Crossref]

Guerrero, M.

M. Guerrero, N. Rüther, R. Szupiany, S. Haun, S. Baranya, and F. Latosinski, “The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability,” Water 8(1), 13 (2016).
[Crossref]

Guimarães, V. S.

J. Callède, G. Cochonneau, F. V. Alves, J.-L. Guyot, V. S. Guimarães, and E. De Oliveira, “Les apports en eau de l’Amazone à l’Océan Atlantique,” Revue des sciences de l’eau 23(3), 247 (2010).
[Crossref]

Guyot, J. L.

J. M. Martinez, J. L. Guyot, N. Filizola, and F. Sondag, “Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data,” Catena 79(3), 257–264 (2009).
[Crossref]

N. Filizola and J. L. Guyot, “Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set,” Hydrol. Processes 23(22), 3207–3215 (2009).
[Crossref]

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

J. L. Guyot, J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillet, and C. Lagane, “Clay mineral composition of river sediments in the Amazon Basin,” Catena 71(2), 340–356 (2007).
[Crossref]

J. Callède, J. L. Guyot, J. Ronchail, Y. L’Hôte, H. Niel, and E. de Oliveira, “Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999,” Hydrol. Sci. J. 49(1), 85–97 (2004).
[Crossref]

P. Moreira-Turcq, P. Seyler, J. L. Guyot, and H. Etcheber, “Exportation of organic carbon from the Amazon River and its main tributaries,” Hydrol. Processes 17(7), 1329–1344 (2003).
[Crossref]

Guyot, J.-L.

R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
[Crossref]

J. Callède, G. Cochonneau, F. V. Alves, J.-L. Guyot, V. S. Guimarães, and E. De Oliveira, “Les apports en eau de l’Amazone à l’Océan Atlantique,” Revue des sciences de l’eau 23(3), 247 (2010).
[Crossref]

Han, B.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Han, L.

S. Chen, L. Han, X. Chen, D. Li, L. Sun, and Y. Li, “Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method,” ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
[Crossref]

Han, Z.

Z. Han, Y.-Q. Jin, and C.-X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens. 27(19), 4329–4336 (2006).
[Crossref]

Hannonen, T.

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

Hanuš, J.

H. Vinciková, J. Hanuš, and L. Pechar, “Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands,” Wetlands Ecol. Manage. 23(5), 933–946 (2015).
[Crossref]

Härmä, P.

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

Harrington, J. A.

J. A. Harrington, F. R. Schiebe, and J. F. Nix, “Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data,” Remote Sens. Environ. 39(1), 15–27 (1992).
[Crossref]

Harris, J. E.

J. E. Harris, “Characterization of suspended matter in the Gulf of Mexico—II Particle size analysis of suspended matter from deep water,” Deep-Sea Res. 24(11), 1055–1061 (1977).
[Crossref]

Haun, S.

M. Guerrero, N. Rüther, R. Szupiany, S. Haun, S. Baranya, and F. Latosinski, “The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability,” Water 8(1), 13 (2016).
[Crossref]

Hoepffner, N.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Holben, B.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

Horowitz, A. J.

A. J. Horowitz, “Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes,” Sci. Total Environ. 400(1-3), 315–343 (2008).
[Crossref] [PubMed]

Hu, C.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Jacobs, M. M.

Jin, Y.-Q.

Z. Han, Y.-Q. Jin, and C.-X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens. 27(19), 4329–4336 (2006).
[Crossref]

Jintasaeranee, P.

H. Kobayashi, M. Toratani, S. Matsumura, A. Siripong, T. Lirdwitayaprasit, and P. Jintasaeranee, “Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters,” Int. J. Remote Sens. 32(23), 8393–8420 (2011).
[Crossref]

Jouanneau, J. M.

J. L. Guyot, J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillet, and C. Lagane, “Clay mineral composition of river sediments in the Amazon Basin,” Catena 71(2), 340–356 (2007).
[Crossref]

Jouon, A.

A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
[Crossref]

Kallio, K.

K. Kallio, J. Pulliainen, and P. Ylöstalo, “MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semianalytical and empirical algorithms,” Geophysica 41, 31–55 (2005).

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

Kämäri, J.

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

Kaufman, Y. J.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

Kerr, P.

P. Kerr, “Optical mineralogy, 492 pp,” (1977).

Kettner, A. J.

J. P. M. Syvitski, C. J. Vörösmarty, A. J. Kettner, and P. Green, “Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean,” Science 308(5720), 376–380 (2005).
[Crossref] [PubMed]

Kiefer, D. A.

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991).
[Crossref]

King, M. D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

Kipp, P.-R.

Kirk, J. T.

J. T. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt. 36(24), 6123–6128 (1997).
[Crossref] [PubMed]

J. T. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36(3), 455–467 (1991).
[Crossref]

Knaeps, E.

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

Kobayashi, H.

H. Kobayashi, M. Toratani, S. Matsumura, A. Siripong, T. Lirdwitayaprasit, and P. Jintasaeranee, “Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters,” Int. J. Remote Sens. 32(23), 8393–8420 (2011).
[Crossref]

Koponen, S.

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

Korotaev, G.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

Kostadinov, T. S.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[Crossref]

L’Hôte, Y.

J. Callède, J. L. Guyot, J. Ronchail, Y. L’Hôte, H. Niel, and E. de Oliveira, “Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999,” Hydrol. Sci. J. 49(1), 85–97 (2004).
[Crossref]

Lagane, C.

J. L. Guyot, J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillet, and C. Lagane, “Clay mineral composition of river sediments in the Amazon Basin,” Catena 71(2), 340–356 (2007).
[Crossref]

Lahet, F.

P. Forget, S. Ouillon, F. Lahet, and P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68(3), 264–272 (1999).
[Crossref]

Lartiges, B.

S. Pinet, B. Lartiges, J.-M. Martinez, and S. Ouillon, “From SEM analysis to the mineralogical composition of suspended sediments in large river basin,” in preparation.

Latosinski, F.

M. Guerrero, N. Rüther, R. Szupiany, S. Haun, S. Baranya, and F. Latosinski, “The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability,” Water 8(1), 13 (2016).
[Crossref]

Latrubesse, E. M.

E. M. Latrubesse, “Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers,” Geomorphology 101(1-2), 130–145 (2008).
[Crossref]

Lavado, W.

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

Lavender, S.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

Lavender, S. J.

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

Le Texier, M.

R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
[Crossref]

Leathers, R. A.

Lee, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

Lee, Z.

Leeks, G. J.

D. E. Walling, P. N. Owens, B. D. Waterfall, G. J. Leeks, and P. D. Wass, “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK,” Sci. Total Environ. 251-252, 205–222 (2000).
[Crossref] [PubMed]

Lefebvre, J. P.

A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
[Crossref]

Leppard, G. G.

J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
[Crossref] [PubMed]

Lesht, B. M.

J. R. Stroud, B. M. Lesht, D. J. Schwab, D. Beletsky, and M. L. Stein, “Assimilation of satellite images into a sediment transport model of Lake Michigan,” Water Resour. Res. 45(2), W02419 (2009).
[Crossref]

Li, C.

L. Cai, D. Tang, and C. Li, “An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data,” Adv. Space Res. 56(2), 293–303 (2015).
[Crossref]

Li, D.

S. Chen, L. Han, X. Chen, D. Li, L. Sun, and Y. Li, “Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method,” ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
[Crossref]

Li, Y.

S. Chen, L. Han, X. Chen, D. Li, L. Sun, and Y. Li, “Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method,” ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
[Crossref]

Lide, D.

D. Lide,

Lin, G.

Lirdwitayaprasit, T.

H. Kobayashi, M. Toratani, S. Matsumura, A. Siripong, T. Lirdwitayaprasit, and P. Jintasaeranee, “Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters,” Int. J. Remote Sens. 32(23), 8393–8420 (2011).
[Crossref]

Loisel, H.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

H. Loisel, X. Mériaux, J.-F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52(2), 739–752 (2007).
[Crossref]

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[Crossref]

Ma, R.

R. Ma, X. Ma, and J. Dai, “Hyperspectral feature analysis of chlorophyll a and suspended solids using field measurements from Taihu Lake, eastern China,” Hydrol. Sci. J. 52(4), 808–824 (2007).
[Crossref]

R. Ma, J. Tang, J. Dai, Y. Zhang, and Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[Crossref]

Ma, X.

R. Ma, X. Ma, and J. Dai, “Hyperspectral feature analysis of chlorophyll a and suspended solids using field measurements from Taihu Lake, eastern China,” Hydrol. Sci. J. 52(4), 808–824 (2007).
[Crossref]

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Maillet, N.

J. L. Guyot, J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillet, and C. Lagane, “Clay mineral composition of river sediments in the Amazon Basin,” Catena 71(2), 340–356 (2007).
[Crossref]

Marengo, J. A.

J. A. Marengo, “Variations and change in South American streamflow,” Clim. Change 31(1), 99–117 (1995).
[Crossref]

Mari, X.

A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
[Crossref]

Maritorena, S.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[Crossref]

Martinez, J. M.

J. M. Martinez, J. L. Guyot, N. Filizola, and F. Sondag, “Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data,” Catena 79(3), 257–264 (2009).
[Crossref]

Martinez, J.-M.

J.-M. Martinez, R. Espinoza-Villar, E. Armijos, and L. Silva Moreira, “The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter,” J. Geophys. Res.: Earth Surface 120, 1274–1287 (2015).

R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
[Crossref]

S. Pinet, B. Lartiges, J.-M. Martinez, and S. Ouillon, “From SEM analysis to the mineralogical composition of suspended sediments in large river basin,” in preparation.

Matsumura, S.

H. Kobayashi, M. Toratani, S. Matsumura, A. Siripong, T. Lirdwitayaprasit, and P. Jintasaeranee, “Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters,” Int. J. Remote Sens. 32(23), 8393–8420 (2011).
[Crossref]

Maurice, L.

J. Bouchez, J. Gaillardet, C. France-Lanord, L. Maurice, and P. Dutra-Maia, “Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles,” Geochem. Geophys. Geosyst. 12(3), Q03008 (2011).
[Crossref]

McKee, D.

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

Meade, R. H.

J. D. Milliman and R. H. Meade, “World-wide delivery of river sediment to the oceans,” J. Geol. 91(1), 1–21 (1983).
[Crossref]

Meneses, P. R.

R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
[Crossref]

Mériaux, X.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

H. Loisel, X. Mériaux, J.-F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52(2), 739–752 (2007).
[Crossref]

Milliman, J. D.

J. D. Milliman and R. H. Meade, “World-wide delivery of river sediment to the oceans,” J. Geol. 91(1), 1–21 (1983).
[Crossref]

Mobley, C. D.

Moore, G. F.

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

Moreira-Turcq, P.

P. Moreira-Turcq, P. Seyler, J. L. Guyot, and H. Etcheber, “Exportation of organic carbon from the Amazon River and its main tributaries,” Hydrol. Processes 17(7), 1329–1344 (2003).
[Crossref]

Morel, A.

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[Crossref]

A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49(1), 177–202 (1991).
[Crossref]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Muller-Karger, F. E.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Nechad, B.

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

Niel, H.

J. Callède, J. L. Guyot, J. Ronchail, Y. L’Hôte, H. Niel, and E. de Oliveira, “Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999,” Hydrol. Sci. J. 49(1), 85–97 (2004).
[Crossref]

Nix, J. F.

J. A. Harrington, F. R. Schiebe, and J. F. Nix, “Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data,” Remote Sens. Environ. 39(1), 15–27 (1992).
[Crossref]

Nobre, C.

J. E. Richey, C. Nobre, and C. Deser, “Amazon River discharge and climate variability: 1903 to 1985,” Science 246(4926), 101–103 (1989).
[Crossref] [PubMed]

O’Donnell, D.

Obolensky, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Oelkers, E. H.

S. R. Gislason, E. H. Oelkers, and Á. Snorrason, “Role of river-suspended material in the global carbon cycle,” Geology 34(1), 49–52 (2006).
[Crossref]

Ouillon, S.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
[Crossref]

J.-M. Froidefond and S. Ouillon, “Introducing a mini-catamaran to perform reflectance measurements above and below the water surface,” Opt. Express 13(3), 926–936 (2005).
[Crossref] [PubMed]

P. Forget, S. Ouillon, F. Lahet, and P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68(3), 264–272 (1999).
[Crossref]

P. Forget and S. Ouillon, “Surface suspended matter off the Rhône river mouth from visible satellite imagery,” Oceanol. Acta 21(6), 739–749 (1998).
[Crossref]

S. Pinet, B. Lartiges, J.-M. Martinez, and S. Ouillon, “From SEM analysis to the mineralogical composition of suspended sediments in large river basin,” in preparation.

Owens, P. N.

D. E. Walling, P. N. Owens, B. D. Waterfall, G. J. Leeks, and P. D. Wass, “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK,” Sci. Total Environ. 251-252, 205–222 (2000).
[Crossref] [PubMed]

Pechar, L.

H. Vinciková, J. Hanuš, and L. Pechar, “Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands,” Wetlands Ecol. Manage. 23(5), 933–946 (2015).
[Crossref]

Pegau, W. S.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Peng, F.

F. Peng and S. W. Effler, “Spectral absorption properties of mineral particles in western Lake Erie: Insights from individual particle analysis,” Limnol. Oceanogr. 58(5), 1775–1789 (2013).
[Crossref]

F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007).
[Crossref] [PubMed]

Perkins, M. G.

Petersen, W.

J. Wollschläger, R. Röttgers, W. Petersen, and K. H. Wiltshire, “Performance of absorption coefficient measurements for the in situ determination of chlorophyll-a and total suspended matter,” J. Exp. Mar. Biol. Ecol. 453, 138–147 (2014).
[Crossref]

J. Wollschläger, M. Grunwald, R. Röttgers, and W. Petersen, “Flow-through PSICAM: a new approach for determining water constituents absorption continuously,” Ocean Dyn. 63(7), 761–775 (2013).
[Crossref]

Pinet, S.

S. Pinet, B. Lartiges, J.-M. Martinez, and S. Ouillon, “From SEM analysis to the mineralogical composition of suspended sediments in large river basin,” in preparation.

Piskozub, J.

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

Pokrovsky, O. S.

O. S. Pokrovsky and J. Schott, “Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia),” Chem. Geol. 190(1-4), 141–179 (2002).
[Crossref]

Pombosa, R.

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

Poteau, A.

H. Loisel, X. Mériaux, J.-F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52(2), 739–752 (2007).
[Crossref]

Prieur, L.

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

Pulliainen, J.

K. Kallio, J. Pulliainen, and P. Ylöstalo, “MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semianalytical and empirical algorithms,” Geophysica 41, 31–55 (2005).

Pyhälahti, T.

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

Reynolds, R. A.

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[Crossref]

Richey, J. E.

J. E. Richey, C. Nobre, and C. Deser, “Amazon River discharge and climate variability: 1903 to 1985,” Science 246(4926), 101–103 (1989).
[Crossref] [PubMed]

Ritchie, J. C.

J. C. Ritchie and C. M. Cooper, “Comparison of measured suspended sediment concentrations with suspended sediment concentrations estimated from Landsat MSS data,” Int. J. Remote Sens. 9(3), 379–387 (1988).
[Crossref]

Ronchail, J.

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

J. Callède, J. L. Guyot, J. Ronchail, Y. L’Hôte, H. Niel, and E. de Oliveira, “Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999,” Hydrol. Sci. J. 49(1), 85–97 (2004).
[Crossref]

Röttgers, R.

J. Wollschläger, R. Röttgers, W. Petersen, and K. H. Wiltshire, “Performance of absorption coefficient measurements for the in situ determination of chlorophyll-a and total suspended matter,” J. Exp. Mar. Biol. Ecol. 453, 138–147 (2014).
[Crossref]

R. Röttgers, D. McKee, and C. Utschig, “Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region,” Opt. Express 22(21), 25093–25108 (2014).
[Crossref] [PubMed]

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

J. Wollschläger, M. Grunwald, R. Röttgers, and W. Petersen, “Flow-through PSICAM: a new approach for determining water constituents absorption continuously,” Ocean Dyn. 63(7), 761–775 (2013).
[Crossref]

R. Röttgers, W. Schönfeld, P.-R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
[Crossref] [PubMed]

Rouse, H.

H. Rouse,

Ruddick, K.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

Ruddick, K. G.

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

Rüther, N.

M. Guerrero, N. Rüther, R. Szupiany, S. Haun, S. Baranya, and F. Latosinski, “The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability,” Water 8(1), 13 (2016).
[Crossref]

Schiebe, F. R.

J. A. Harrington, F. R. Schiebe, and J. F. Nix, “Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data,” Remote Sens. Environ. 39(1), 15–27 (1992).
[Crossref]

Schönfeld, W.

Schott, J.

O. S. Pokrovsky and J. Schott, “Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia),” Chem. Geol. 190(1-4), 141–179 (2002).
[Crossref]

Schwab, D. J.

J. R. Stroud, B. M. Lesht, D. J. Schwab, D. Beletsky, and M. L. Stein, “Assimilation of satellite images into a sediment transport model of Lake Michigan,” Water Resour. Res. 45(2), W02419 (2009).
[Crossref]

Seyler, P.

P. Moreira-Turcq, P. Seyler, J. L. Guyot, and H. Etcheber, “Exportation of organic carbon from the Amazon River and its main tributaries,” Hydrol. Processes 17(7), 1329–1344 (2003).
[Crossref]

Shang, S.

Shybanov, E.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

Siegel, D. A.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[Crossref]

Silva Moreira, L.

J.-M. Martinez, R. Espinoza-Villar, E. Armijos, and L. Silva Moreira, “The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter,” J. Geophys. Res.: Earth Surface 120, 1274–1287 (2015).

Siripong, A.

H. Kobayashi, M. Toratani, S. Matsumura, A. Siripong, T. Lirdwitayaprasit, and P. Jintasaeranee, “Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters,” Int. J. Remote Sens. 32(23), 8393–8420 (2011).
[Crossref]

Slutsker, I.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

Smirnov, A.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

Snorrason, Á.

S. R. Gislason, E. H. Oelkers, and Á. Snorrason, “Role of river-suspended material in the global carbon cycle,” Geology 34(1), 49–52 (2006).
[Crossref]

Soares, L.

J. L. Guyot, J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillet, and C. Lagane, “Clay mineral composition of river sediments in the Amazon Basin,” Catena 71(2), 340–356 (2007).
[Crossref]

Sondag, F.

J. M. Martinez, J. L. Guyot, N. Filizola, and F. Sondag, “Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data,” Catena 79(3), 257–264 (2009).
[Crossref]

Song, Q.

R. Ma, J. Tang, J. Dai, Y. Zhang, and Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[Crossref]

Stein, M. L.

J. R. Stroud, B. M. Lesht, D. J. Schwab, D. Beletsky, and M. L. Stein, “Assimilation of satellite images into a sediment transport model of Lake Michigan,” Water Resour. Res. 45(2), W02419 (2009).
[Crossref]

Stramski, D.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[Crossref]

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[Crossref]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
[Crossref]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).
[Crossref] [PubMed]

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991).
[Crossref]

Strömbeck, N.

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

Stroud, J. R.

J. R. Stroud, B. M. Lesht, D. J. Schwab, D. Beletsky, and M. L. Stein, “Assimilation of satellite images into a sediment transport model of Lake Michigan,” Water Resour. Res. 45(2), W02419 (2009).
[Crossref]

Suhyb Salama, M.

S. Budhiman, M. Suhyb Salama, Z. Vekerdy, and W. Verhoef, “Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion,” ISPRS J. Photogramm. Remote Sens. 68, 157–169 (2012).
[Crossref]

Sun, L.

S. Chen, L. Han, X. Chen, D. Li, L. Sun, and Y. Li, “Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method,” ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
[Crossref]

Swarzenski, P.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Syvitski, J. P. M.

J. P. M. Syvitski, C. J. Vörösmarty, A. J. Kettner, and P. Green, “Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean,” Science 308(5720), 376–380 (2005).
[Crossref] [PubMed]

Szupiany, R.

M. Guerrero, N. Rüther, R. Szupiany, S. Haun, S. Baranya, and F. Latosinski, “The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability,” Water 8(1), 13 (2016).
[Crossref]

Tailliez, D.

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

Tang, D.

L. Cai, D. Tang, and C. Li, “An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data,” Adv. Space Res. 56(2), 293–303 (2015).
[Crossref]

Tang, J.

R. Ma, J. Tang, J. Dai, Y. Zhang, and Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[Crossref]

Tanré, D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

Toratani, M.

H. Kobayashi, M. Toratani, S. Matsumura, A. Siripong, T. Lirdwitayaprasit, and P. Jintasaeranee, “Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters,” Int. J. Remote Sens. 32(23), 8393–8420 (2011).
[Crossref]

Twardowski, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

Twardowski, M. S.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Utschig, C.

Van der Stap, C.

W. De Rooij and C. Van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).

Vantrepotte, V.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Vauchel, P.

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

Vekerdy, Z.

S. Budhiman, M. Suhyb Salama, Z. Vekerdy, and W. Verhoef, “Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion,” ISPRS J. Photogramm. Remote Sens. 68, 157–169 (2012).
[Crossref]

Vepsäläinen, J.

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

Verhoef, W.

S. Budhiman, M. Suhyb Salama, Z. Vekerdy, and W. Verhoef, “Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion,” ISPRS J. Photogramm. Remote Sens. 68, 157–169 (2012).
[Crossref]

Villar, R. E.

R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
[Crossref]

Vinciková, H.

H. Vinciková, J. Hanuš, and L. Pechar, “Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands,” Wetlands Ecol. Manage. 23(5), 933–946 (2015).
[Crossref]

Vörösmarty, C. J.

J. P. M. Syvitski, C. J. Vörösmarty, A. J. Kettner, and P. Green, “Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean,” Science 308(5720), 376–380 (2005).
[Crossref] [PubMed]

Voss, K. J.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

Walling, D.

J. Woodward and D. Walling, “Composite suspended sediment particles in river systems: their incidence, dynamics and physical characteristics,” Hydrol. Processes 21(26), 3601–3614 (2007).
[Crossref]

Walling, D. E.

D. E. Walling, P. N. Owens, B. D. Waterfall, G. J. Leeks, and P. D. Wass, “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK,” Sci. Total Environ. 251-252, 205–222 (2000).
[Crossref] [PubMed]

Wass, P. D.

D. E. Walling, P. N. Owens, B. D. Waterfall, G. J. Leeks, and P. D. Wass, “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK,” Sci. Total Environ. 251-252, 205–222 (2000).
[Crossref] [PubMed]

Waterfall, B. D.

D. E. Walling, P. N. Owens, B. D. Waterfall, G. J. Leeks, and P. D. Wass, “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK,” Sci. Total Environ. 251-252, 205–222 (2000).
[Crossref] [PubMed]

Weidemann, A.

Wiltshire, K. H.

J. Wollschläger, R. Röttgers, W. Petersen, and K. H. Wiltshire, “Performance of absorption coefficient measurements for the in situ determination of chlorophyll-a and total suspended matter,” J. Exp. Mar. Biol. Ecol. 453, 138–147 (2014).
[Crossref]

Wollschläger, J.

J. Wollschläger, R. Röttgers, W. Petersen, and K. H. Wiltshire, “Performance of absorption coefficient measurements for the in situ determination of chlorophyll-a and total suspended matter,” J. Exp. Mar. Biol. Ecol. 453, 138–147 (2014).
[Crossref]

J. Wollschläger, M. Grunwald, R. Röttgers, and W. Petersen, “Flow-through PSICAM: a new approach for determining water constituents absorption continuously,” Ocean Dyn. 63(7), 761–775 (2013).
[Crossref]

Woodward, J.

J. Woodward and D. Walling, “Composite suspended sediment particles in river systems: their incidence, dynamics and physical characteristics,” Hydrol. Processes 21(26), 3601–3614 (2007).
[Crossref]

Wozniak, S. B.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[Crossref]

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[Crossref]

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).
[Crossref] [PubMed]

Wright, V. M.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[Crossref]

Xing, Q.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Ylöstalo, P.

K. Kallio, J. Pulliainen, and P. Ylöstalo, “MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semianalytical and empirical algorithms,” Geophysica 41, 31–55 (2005).

Yun, C.-X.

Z. Han, Y.-Q. Jin, and C.-X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens. 27(19), 4329–4336 (2006).
[Crossref]

Zaneveld, J. R. V.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

Zhang, X.

Zhang, Y.

R. Ma, J. Tang, J. Dai, Y. Zhang, and Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[Crossref]

Zhu, J.

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Adv. Space Res. (1)

L. Cai, D. Tang, and C. Li, “An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data,” Adv. Space Res. 56(2), 293–303 (2015).
[Crossref]

Appl. Opt. (8)

S. B. Woźniak and D. Stramski, “Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms,” Appl. Opt. 43(17), 3489–3503 (2004).
[Crossref] [PubMed]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999).
[Crossref] [PubMed]

J. T. Kirk, “Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling,” Appl. Opt. 36(24), 6123–6128 (1997).
[Crossref] [PubMed]

R. A. Leathers, T. V. Downes, and C. O. Davis, “Analysis of a point-source integrating-cavity absorption meter,” Appl. Opt. 39(33), 6118–6127 (2000).
[Crossref] [PubMed]

R. Röttgers, W. Schönfeld, P.-R. Kipp, and R. Doerffer, “Practical test of a point-source integrating cavity absorption meter: the performance of different collector assemblies,” Appl. Opt. 44(26), 5549–5560 (2005).
[Crossref] [PubMed]

H. R. Gordon, O. B. Brown, and M. M. Jacobs, “Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14(2), 417–427 (1975).
[Crossref] [PubMed]

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).
[Crossref] [PubMed]

F. Peng, S. W. Effler, D. O’Donnell, M. G. Perkins, and A. Weidemann, “Role of minerogenic particles in light scattering in lakes and a river in central New York,” Appl. Opt. 46(26), 6577–6594 (2007).
[Crossref] [PubMed]

Astron. Astrophys. (1)

W. De Rooij and C. Van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).

Catena (2)

J. L. Guyot, J. M. Jouanneau, L. Soares, G. R. Boaventura, N. Maillet, and C. Lagane, “Clay mineral composition of river sediments in the Amazon Basin,” Catena 71(2), 340–356 (2007).
[Crossref]

J. M. Martinez, J. L. Guyot, N. Filizola, and F. Sondag, “Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data,” Catena 79(3), 257–264 (2009).
[Crossref]

Chem. Geol. (1)

O. S. Pokrovsky and J. Schott, “Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia),” Chem. Geol. 190(1-4), 141–179 (2002).
[Crossref]

Clays Clay Miner. (1)

S. J. Chipera and D. L. Bish, “Baseline studies of the clay minerals society source clays: powder X-ray diffraction analyses,” Clays Clay Miner. 49(5), 398–409 (2001).
[Crossref]

Clim. Change (1)

J. A. Marengo, “Variations and change in South American streamflow,” Clim. Change 31(1), 99–117 (1995).
[Crossref]

Deep-Sea Res. (1)

J. E. Harris, “Characterization of suspended matter in the Gulf of Mexico—II Particle size analysis of suspended matter from deep water,” Deep-Sea Res. 24(11), 1055–1061 (1977).
[Crossref]

Environ. Sci. Technol. (1)

J. Buffle and G. G. Leppard, “Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material,” Environ. Sci. Technol. 29(9), 2169–2175 (1995).
[Crossref] [PubMed]

Geochem. Geophys. Geosyst. (1)

J. Bouchez, J. Gaillardet, C. France-Lanord, L. Maurice, and P. Dutra-Maia, “Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles,” Geochem. Geophys. Geosyst. 12(3), Q03008 (2011).
[Crossref]

Geochim. Cosmochim. Acta (1)

F. Eyrolle, M. F. Benedetti, J. Y. Benaim, and D. Fevrier, “The distributions of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments,” Geochim. Cosmochim. Acta 60(19), 3643–3656 (1996).
[Crossref]

Geology (1)

S. R. Gislason, E. H. Oelkers, and Á. Snorrason, “Role of river-suspended material in the global carbon cycle,” Geology 34(1), 49–52 (2006).
[Crossref]

Geomorphology (1)

E. M. Latrubesse, “Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers,” Geomorphology 101(1-2), 130–145 (2008).
[Crossref]

Geophysica (1)

K. Kallio, J. Pulliainen, and P. Ylöstalo, “MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semianalytical and empirical algorithms,” Geophysica 41, 31–55 (2005).

Hydrol. Processes (3)

N. Filizola and J. L. Guyot, “Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set,” Hydrol. Processes 23(22), 3207–3215 (2009).
[Crossref]

P. Moreira-Turcq, P. Seyler, J. L. Guyot, and H. Etcheber, “Exportation of organic carbon from the Amazon River and its main tributaries,” Hydrol. Processes 17(7), 1329–1344 (2003).
[Crossref]

J. Woodward and D. Walling, “Composite suspended sediment particles in river systems: their incidence, dynamics and physical characteristics,” Hydrol. Processes 21(26), 3601–3614 (2007).
[Crossref]

Hydrol. Sci. J. (2)

R. Ma, X. Ma, and J. Dai, “Hyperspectral feature analysis of chlorophyll a and suspended solids using field measurements from Taihu Lake, eastern China,” Hydrol. Sci. J. 52(4), 808–824 (2007).
[Crossref]

J. Callède, J. L. Guyot, J. Ronchail, Y. L’Hôte, H. Niel, and E. de Oliveira, “Evolution du débit de l’Amazone à Óbidos de 1903 à 1999/Evolution of the River Amazon’s discharge at Óbidos from 1903 to 1999,” Hydrol. Sci. J. 49(1), 85–97 (2004).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41(6), 1378–1387 (2003).
[Crossref]

Int. J. Climatol. (1)

J. C. Espinoza Villar, J. Ronchail, J. L. Guyot, G. Cochonneau, N. Filizola, W. Lavado, E. De Oliveira, R. Pombosa, and P. Vauchel, “Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador),” Int. J. Climatol. 29(11), 1574–1594 (2009).
[Crossref]

Int. J. Remote Sens. (6)

Z. Han, Y.-Q. Jin, and C.-X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens. 27(19), 4329–4336 (2006).
[Crossref]

H. Kobayashi, M. Toratani, S. Matsumura, A. Siripong, T. Lirdwitayaprasit, and P. Jintasaeranee, “Optical properties of inorganic suspended solids and their influence on ocean colour remote sensing in highly turbid coastal waters,” Int. J. Remote Sens. 32(23), 8393–8420 (2011).
[Crossref]

J. C. Ritchie and C. M. Cooper, “Comparison of measured suspended sediment concentrations with suspended sediment concentrations estimated from Landsat MSS data,” Int. J. Remote Sens. 9(3), 379–387 (1988).
[Crossref]

H. Loisel and A. Morel, “Non-isotropy of the upward radiance field in typical coastal (Case 2) waters,” Int. J. Remote Sens. 22(2-3), 275–295 (2001).
[Crossref]

R. Ma, J. Tang, J. Dai, Y. Zhang, and Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006).
[Crossref]

G. F. Moore, J. Aiken, and S. J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (2)

S. Chen, L. Han, X. Chen, D. Li, L. Sun, and Y. Li, “Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method,” ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
[Crossref]

S. Budhiman, M. Suhyb Salama, Z. Vekerdy, and W. Verhoef, “Deriving optical properties of Mahakam Delta coastal waters, Indonesia using in situ measurements and ocean color model inversion,” ISPRS J. Photogramm. Remote Sens. 68, 157–169 (2012).
[Crossref]

J. Atmos. Ocean. Technol. (1)

D. McKee, J. Piskozub, R. Röttgers, and R. A. Reynolds, “Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements,” J. Atmos. Ocean. Technol. 30(7), 1527–1541 (2013).
[Crossref]

J. Atmos. Sci. (1)

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).
[Crossref]

J. Exp. Mar. Biol. Ecol. (1)

J. Wollschläger, R. Röttgers, W. Petersen, and K. H. Wiltshire, “Performance of absorption coefficient measurements for the in situ determination of chlorophyll-a and total suspended matter,” J. Exp. Mar. Biol. Ecol. 453, 138–147 (2014).
[Crossref]

J. Geol. (1)

J. D. Milliman and R. H. Meade, “World-wide delivery of river sediment to the oceans,” J. Geol. 91(1), 1–21 (1983).
[Crossref]

J. Geophys. Res. (6)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109(C1), C01014 (2004).
[Crossref]

H. Bader, “The hyperbolic distribution of particle sizes,” J. Geophys. Res. 75(15), 2822–2830 (1970).
[Crossref]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106(C7), 14129–14142 (2001).
[Crossref]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114(C9), C09015 (2009).
[Crossref]

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115(C8), C08024 (2010).
[Crossref]

J. Geophys. Res.: Earth Surface (1)

J.-M. Martinez, R. Espinoza-Villar, E. Armijos, and L. Silva Moreira, “The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter,” J. Geophys. Res.: Earth Surface 120, 1274–1287 (2015).

J. Mar. Res. (1)

A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49(1), 177–202 (1991).
[Crossref]

J. Plankton Res. (1)

E. Aas, “Refractive index of phytoplankton derived from its metabolite composition,” J. Plankton Res. 18(12), 2223–2249 (1996).
[Crossref]

J. S. Am. Earth Sci. (1)

R. E. Villar, J.-M. Martinez, M. Le Texier, J.-L. Guyot, P. Fraizy, P. R. Meneses, and E. de Oliveira, “A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images,” J. S. Am. Earth Sci. 44, 45–54 (2013).
[Crossref]

Limnol. Oceanogr. (7)

H. Loisel, X. Mériaux, J.-F. Berthon, and A. Poteau, “Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea,” Limnol. Oceanogr. 52(2), 739–752 (2007).
[Crossref]

D. Doxaran, K. Ruddick, D. McKee, B. Gentili, D. Tailliez, M. Chami, and M. Babin, “Spectral variations of light scattering by marine particles in coastal waters, from visible to near infrared,” Limnol. Oceanogr. 54(4), 1257–1271 (2009).
[Crossref]

A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977).
[Crossref]

J. T. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36(3), 455–467 (1991).
[Crossref]

M. Babin and D. Stramski, “Variations in the mass-specific absorption coefficient of mineral particles suspended in water,” Limnol. Oceanogr. 49(3), 756–767 (2004).
[Crossref]

F. Peng and S. W. Effler, “Spectral absorption properties of mineral particles in western Lake Erie: Insights from individual particle analysis,” Limnol. Oceanogr. 58(5), 1775–1789 (2013).
[Crossref]

D. Stramski, M. Babin, and S. B. Wozniak, “Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater,” Limnol. Oceanogr. 52(6), 2418–2433 (2007).
[Crossref]

Mach. Learn. (1)

L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[Crossref]

Mar. Geol. (1)

A. Jouon, S. Ouillon, P. Douillet, J. P. Lefebvre, J. M. Fernandez, X. Mari, and J.-M. Froidefond, “Spatio-temporal variability in suspended particulate matter concentration and the role of aggregation on size distribution in a coral reef lagoon,” Mar. Geol. 256(1-4), 36–48 (2008).
[Crossref]

Nature (1)

P. A. Allen, “From landscapes into geological history,” Nature 451(7176), 274–276 (2008).
[Crossref] [PubMed]

Ocean Dyn. (1)

J. Wollschläger, M. Grunwald, R. Röttgers, and W. Petersen, “Flow-through PSICAM: a new approach for determining water constituents absorption continuously,” Ocean Dyn. 63(7), 761–775 (2013).
[Crossref]

Oceanol. Acta (1)

P. Forget and S. Ouillon, “Surface suspended matter off the Rhône river mouth from visible satellite imagery,” Oceanol. Acta 21(6), 739–749 (1998).
[Crossref]

Opt. Express (3)

Prog. Oceanogr. (2)

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991).
[Crossref]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004).
[Crossref]

Remote Sens. (1)

B. Han, H. Loisel, V. Vantrepotte, X. Mériaux, P. Bryère, S. Ouillon, D. Dessailly, Q. Xing, and J. Zhu, “Development of a Semi-Analytical Algorithm for the Retrieval of Suspended Particulate Matter from Remote Sensing over Clear to Very Turbid Waters,” Remote Sens. 8(3), 211 (2016).
[Crossref]

Remote Sens. Environ. (6)

J. A. Harrington, F. R. Schiebe, and J. F. Nix, “Remote sensing of Lake Chicot, Arkansas: Monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data,” Remote Sens. Environ. 39(1), 15–27 (1992).
[Crossref]

A. I. Dogliotti, K. G. Ruddick, B. Nechad, D. Doxaran, and E. Knaeps, “A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters,” Remote Sens. Environ. 156, 157–168 (2015).
[Crossref]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81(1), 149–161 (2002).
[Crossref]

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

P. Forget, S. Ouillon, F. Lahet, and P. Broche, “Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters,” Remote Sens. Environ. 68(3), 264–272 (1999).
[Crossref]

C. Giardino, V. E. Brando, A. G. Dekker, N. Strömbeck, and G. Candiani, “Assessment of water quality in Lake Garda (Italy) using Hyperion,” Remote Sens. Environ. 109(2), 183–195 (2007).
[Crossref]

Revue des sciences de l’eau (1)

J. Callède, G. Cochonneau, F. V. Alves, J.-L. Guyot, V. S. Guimarães, and E. De Oliveira, “Les apports en eau de l’Amazone à l’Océan Atlantique,” Revue des sciences de l’eau 23(3), 247 (2010).
[Crossref]

Sci. Total Environ. (3)

P. Härmä, J. Vepsäläinen, T. Hannonen, T. Pyhälahti, J. Kämäri, K. Kallio, K. Eloheimo, and S. Koponen, “Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland,” Sci. Total Environ. 268(1-3), 107–121 (2001).
[Crossref] [PubMed]

A. J. Horowitz, “Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes,” Sci. Total Environ. 400(1-3), 315–343 (2008).
[Crossref] [PubMed]

D. E. Walling, P. N. Owens, B. D. Waterfall, G. J. Leeks, and P. D. Wass, “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK,” Sci. Total Environ. 251-252, 205–222 (2000).
[Crossref] [PubMed]

Science (2)

J. P. M. Syvitski, C. J. Vörösmarty, A. J. Kettner, and P. Green, “Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean,” Science 308(5720), 376–380 (2005).
[Crossref] [PubMed]

J. E. Richey, C. Nobre, and C. Deser, “Amazon River discharge and climate variability: 1903 to 1985,” Science 246(4926), 101–103 (1989).
[Crossref] [PubMed]

Water (1)

M. Guerrero, N. Rüther, R. Szupiany, S. Haun, S. Baranya, and F. Latosinski, “The Acoustic Properties of Suspended Sediment in Large Rivers: Consequences on ADCP Methods Applicability,” Water 8(1), 13 (2016).
[Crossref]

Water Resour. Res. (1)

J. R. Stroud, B. M. Lesht, D. J. Schwab, D. Beletsky, and M. L. Stein, “Assimilation of satellite images into a sediment transport model of Lake Michigan,” Water Resour. Res. 45(2), W02419 (2009).
[Crossref]

Wetlands Ecol. Manage. (1)

H. Vinciková, J. Hanuš, and L. Pechar, “Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands,” Wetlands Ecol. Manage. 23(5), 933–946 (2015).
[Crossref]

Other (16)

B. M. Fekete and C. J. Vörösmarty, “The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements,” in Predictions in Ungauged Basins: PUB Kick-off (Proceedings of the PUB Kick-off Meeting Held in Brasilia, 20–22 November 2002). IAHS Publication (2002), Vol. 349.

M. Goulding, R. Barthem, and E. Ferreira, “The Smithsonian atlas of the Amazon,” Smithsonian Books, Washington and London, USA and UK. (2003).

S. Pinet, B. Lartiges, J.-M. Martinez, and S. Ouillon, “From SEM analysis to the mineralogical composition of suspended sediments in large river basin,” in preparation.

J.-P. Eberhart, Analyse Structurale et Chimique Des Matériaux (Dunod, 1989).

L. Kaufman and P. Rousseeuw, Clustering by Means of Medoids (North-Holland, 1987).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic press, 1994).

C. E. Junge, “Air chemistry and radioactivity,” 1963 382 (1963).

M. Molinier, J. L. Guyot, J. Callède, E. De Oliveira, V. S. Guimarães, K. J. Cudo, and M. C. De Aquino, “Hidrologia de la cuenca amazonica Brasileira: HIBAM primeros resultados sobre la cuenca del rio Madeira - términos del balance hídrico. Metodologia,” 155–164 (1993).

N. G. Jerlov, Marine Optics (Elsevier, 1976), Vol. 14.

H. C. Van de Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

J. T. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994).

D. Lide,

P. Kerr, “Optical mineralogy, 492 pp,” (1977).

M. Boller and R. Kaegi, Characterization of Aquatic Particles (IWA Publishing, London, UK, 2011).

D. Walling and P. Moorehead, “The particle size characteristics of fluvial suspended sediment: an overview,” in Sediment/Water Interactions (Springer, 1989), pp. 125–149.

H. Rouse,

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Map of the Amazon River basin and of the Solimões and Madeira River tributaries (after Villar et al. [32]).

Fig. 2
Fig. 2

Data involved in the modeling process (inputs and outputs), or used to compared the simulated optical properties with in situ measurements and satellite data. Model calibration was based on field samplings (PSD, mineralogy and light absorption coefficient). Satellite data were retrieved from MODIS image time series following Villar et al. [32] in order to display the R rs seasonal hysteresis as a function of SPM concentration, and to compare the reflectance estimates with the modeling outputs. They were not used for modeling calibration.

Fig. 3
Fig. 3

Measured particle size distributions of 85 samples (grey curves): number of particles per µm3. The crosses represent a theoretical power law, the triangles represent a power-law regression on the entire data set, and the black lines represent power-law regressions for size ranges lower and greater than 10 µm.

Fig. 4
Fig. 4

Mineralogy determined after SEM analysis for the Madeira River in March 2013 (left), and in December 2014 (right).

Fig. 5
Fig. 5

Relationships between SSCs and optical properties: a) in situ R rs (850); b) band ratio between R rs (850) and R rs (670); c) in situ diffuse light attenuation coefficient K d (670); d) in situ non-algal particulate matter absorption coefficient a NAP (550).

Fig. 6
Fig. 6

Average monthly MODIS surface reflectances R s (850) for 2000-2011 as a function of SSC on the Madeira River at the Porto Velho gauging station as retrieved by Villar et al. [32]. The numbers indicate the month from January (1) to December (12).

Fig. 7
Fig. 7

Spectral variations of the imaginary part n ' of the refraction index of the suspended particles. Data corresponding to Solimões River and Madeira River are mean values (standard deviations are represented by the error bars) obtained by mineralogical determination by SEM. Values extracted from Kobayashi et al. [11] and corresponding to the Bangpankong River estuary stand for the reference.

Fig. 8
Fig. 8

Monthly variations of a NAP , b NAP , b bNAP at 5 wavelengths on the Madeira River. Annotations represent months from January (1) to December (12).

Fig. 9
Fig. 9

Variations between monthly means of the AOPs and the SSCs: a) R rs (850); b) K d (670); c) reflectances band ratio between 850 and 670 nm.

Fig. 10
Fig. 10

Comparison between the average monthly R rs (850) retrieved from the MODIS data [32] and the simulations from the MMP integrating in situ measurements as inputs.

Fig. 11
Fig. 11

Contributions of 10 different particle size classes (in µm) to the absorption, scattering and backscattering processes (from the top line to the bottom, respectively) for two refraction indices n and two PSDs. The size classes were extracted from Stramski & Kiefer [69].

Fig. 12
Fig. 12

Evolution of R rs (850) and R rs (670) as a function of the imaginary part n ' of the refraction index for different J 2 values (c.f. legend of each graphic) and two n values.

Fig. 13
Fig. 13

Variations in the simulated a) R rs (850), b) R rs (670) and c) R rs (850)/ R rs (670) for various PSDs (through the slope J 2 of the PSD for their finer particles) and for different values of n (the real part of the sediment refraction index).

Tables (3)

Tables Icon

Table 1 List of acronyms and symbols.

Tables Icon

Table 2 Ranges of the parameters measured at the 104 stations during the three field surveys.

Tables Icon

Table 3 Number (Ns) of optical and PSD measurements for each stream and average values of D50, D90 (in µm), and slopes of the PSDs (see Table 1 for symbols).

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

N( D )=K× D J .
R rs ( 0 + , θ,ϕ,λ )= L w ( 0 + ,θ,ϕ,λ ) E d ( 0 + ,ϕ,λ ) .
R rs = L u ( λ ) ρ× L d ( λ ) E d  (λ) .
a NAP =  a TOT   a CDOM .
C b = D min D max Q b ( λ,D,n )( π D 2 4 )N( D )dD D min D max N( D )dD ,
C bb = D min D max Q bb ( λ,D,n )( π D 2 4 )N( D )dD D min D max N( D )dD ,
C bb = D min D max Q bb ( λ,D,n )( π D 2 4 )N( D )dD D min D max N( D )dD ,
C a = D min D max Q a ( λ,D,n )( π D 2 4 )N( D )dD D min D max N( D )dD ,
G= π 4 D min D max D²N( D )dD D min D max N( D )dD ,
Q ¯ b = C b G ,
Q ¯ bb = C bb G ,
b NAP * = 3 Q ¯ b 2 ρ ' D min D max N(D)D²dD   ( D min D max N( D ) D 3 dD ) 1 ,
b bNAP * = 3 Q ¯ bb 2 ρ ' D min D max N(D)D²dD   ( D min D max N( D ) D 3 dD ) 1 ,
a NAP * = 3 Q ¯ a 2 ρ ' D min D max N(D)D²dD   ( D min D max N( D ) D 3 dD ) 1 .
R( 0 )= f ' ×  b bTOT a TOT +  b bTOT ,
K d =  a TOT 2 +(G'× a TOT × b TOT ) ,
R rs = t n water ²  ×  f' Q  ×  b bTOT a TOT +  b bTOT .
b TOT =  b W +  b NAP +  b CDOM +  b PHY ,
b bTOT =  b bW +  b bNAP +  b bCDOM +  b bPHY ,
a TOT =  a W +  a NAP +  a CDOM +  a PHY .
R( 0 )= f ' ×  b bNAP a W +  a NAP +  a CDOM +  b bNAP ,
K d =  ( a W +  a NAP +  a CDOM )²+G'×( a W +  a NAP +  a CDOM )× b NAP ) ,
R rs = t n water ²  ×  f ' Q  ×  b bNAP a W +  a NAP +  a CDOM +  b bNAP .

Metrics