Abstract

We recently reported that an Au/TiO2 photonic crystal device for photochemical energy conversion showed a sub-bandgap photoresponse centered at the surface plasmon polariton (SPP) resonant wavelength of this device. Here we developed a theoretical modeling of the internal photoemission in this device by incorporating the effects of anisotropic hot electron momentum distribution caused by SPP. The influences of interband and intraband transition, anisotropic momentum distribution of hot electrons by SPP are integrated to model the internal quantum efficiency (IQE) of this device. Near resonant wavelength, SPP dominates the electric field in the thin Au layer, which generates hot electrons with high enough momentum preferentially normal to the Schottky interface. Compared with the widely used Fowler’s theory of internal photoemission, our model better predicts hot electron collection in Schottky devices. This model will provide a design guidance for tuning and enhancing photoresponse of Schottky hot carrier devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals

Jeffrey B. Chou, Xin-Hao Li, Yu Wang, David P. Fenning, Asmaa Elfaer, Jaime Viegas, Mustapha Jouiad, Yang Shao-Horn, and Sang-Gook Kim
Opt. Express 24(18) A1234-A1244 (2016)

Metal-insulator-semiconductor heterostructures for plasmonic hot-carrier optoelectronics

F. Pelayo García de Arquer and Gerasimos Konstantatos
Opt. Express 23(11) 14715-14723 (2015)

Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band

Ilya Goykhman, Boris Desiatov, Jacob Khurgin, Joseph Shappir, and Uriel Levy
Opt. Express 20(27) 28594-28602 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
    [Crossref] [PubMed]
  2. S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
    [Crossref] [PubMed]
  3. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
    [Crossref]
  4. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  5. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  6. F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
    [Crossref]
  7. J. B. Chou, X.-H. Li, Y. Wang, D. P. Fenning, A. Elfaer, J. Viegas, M. Jouiad, Y. Shao-Horn, and S.-G. Kim, “Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals,” Opt. Express 24(18), A1234–A1244 (2016).
    [Crossref] [PubMed]
  8. J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(101), A144–A154 (2014).
    [Crossref] [PubMed]
  9. J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
    [Crossref] [PubMed]
  10. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
  11. F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
    [Crossref] [PubMed]
  12. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
    [Crossref]
  13. Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, and T. Majima, “Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity,” J. Am. Chem. Soc. 136(1), 458–465 (2014).
    [Crossref] [PubMed]
  14. K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
    [Crossref] [PubMed]
  15. T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
    [Crossref]
  16. A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
    [Crossref]
  17. C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
    [Crossref]
  18. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref] [PubMed]
  19. A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Non-radiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces and geometry,” ACS Nano 10(1), 957–966 (2016).
    [Crossref] [PubMed]
  20. M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
    [Crossref] [PubMed]
  21. A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
    [Crossref]
  22. R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
    [Crossref] [PubMed]
  23. A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
    [Crossref]
  24. B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
    [Crossref] [PubMed]
  25. Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
    [Crossref] [PubMed]
  26. C. Berglund and W. Spicer, “Photoemission studies of copper and silver: experiment,” Phys. Rev. 136(4A), A1044–A1064 (1964).
    [Crossref]
  27. C. S. Kumarasinghe, M. Premaratne, Q. Bao, and G. P. Agrawal, “Theoretical analysis of hot electron dynamics in nanorods,” Sci. Rep. 5, 12140 (2015).
    [Crossref] [PubMed]
  28. A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
    [Crossref] [PubMed]
  29. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
    [Crossref] [PubMed]
  30. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
    [Crossref] [PubMed]
  31. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  32. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
    [Crossref]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  34. P. Narang, R. Sundararaman, and H. A. Atwater, “Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion,” Nanophotonics 5(1), 96–111 (2016).
    [Crossref]
  35. Q. Y. Chen and C. W. Bates., “Geometrical factors in enhanced photoyield from small metal particles,” Phys. Rev. Lett. 57(21), 2737–2740 (1986).
    [Crossref] [PubMed]
  36. H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B Condens. Matter 1(2), 522–536 (1970).
    [Crossref]
  37. R. S. Ikhsanov, V. E. e. Babicheva, I. E. e. Protsenko, A. V. e. Uskov, and M. E. e. Guzhva, “Bulk photoemission from metal films and nanoparticles,” Quantum Electron. 45(1), 50–58 (2015).
    [Crossref]

2016 (3)

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Non-radiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

P. Narang, R. Sundararaman, and H. A. Atwater, “Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion,” Nanophotonics 5(1), 96–111 (2016).
[Crossref]

J. B. Chou, X.-H. Li, Y. Wang, D. P. Fenning, A. Elfaer, J. Viegas, M. Jouiad, Y. Shao-Horn, and S.-G. Kim, “Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals,” Opt. Express 24(18), A1234–A1244 (2016).
[Crossref] [PubMed]

2015 (8)

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

R. S. Ikhsanov, V. E. e. Babicheva, I. E. e. Protsenko, A. V. e. Uskov, and M. E. e. Guzhva, “Bulk photoemission from metal films and nanoparticles,” Quantum Electron. 45(1), 50–58 (2015).
[Crossref]

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

C. S. Kumarasinghe, M. Premaratne, Q. Bao, and G. P. Agrawal, “Theoretical analysis of hot electron dynamics in nanorods,” Sci. Rep. 5, 12140 (2015).
[Crossref] [PubMed]

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

2014 (8)

Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, and T. Majima, “Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity,” J. Am. Chem. Soc. 136(1), 458–465 (2014).
[Crossref] [PubMed]

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(101), A144–A154 (2014).
[Crossref] [PubMed]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

2013 (4)

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

2012 (2)

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

2011 (2)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

2010 (2)

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

1986 (1)

Q. Y. Chen and C. W. Bates., “Geometrical factors in enhanced photoyield from small metal particles,” Phys. Rev. Lett. 57(21), 2737–2740 (1986).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
[Crossref]

1970 (1)

H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B Condens. Matter 1(2), 522–536 (1970).
[Crossref]

1964 (1)

C. Berglund and W. Spicer, “Photoemission studies of copper and silver: experiment,” Phys. Rev. 136(4A), A1044–A1064 (1964).
[Crossref]

1931 (1)

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Agrawal, G. P.

C. S. Kumarasinghe, M. Premaratne, Q. Bao, and G. P. Agrawal, “Theoretical analysis of hot electron dynamics in nanorods,” Sci. Rep. 5, 12140 (2015).
[Crossref] [PubMed]

Atwater, H. A.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Non-radiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

P. Narang, R. Sundararaman, and H. A. Atwater, “Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion,” Nanophotonics 5(1), 96–111 (2016).
[Crossref]

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Babicheva, V. E. e.

R. S. Ikhsanov, V. E. e. Babicheva, I. E. e. Protsenko, A. V. e. Uskov, and M. E. e. Guzhva, “Bulk photoemission from metal films and nanoparticles,” Quantum Electron. 45(1), 50–58 (2015).
[Crossref]

Bao, Q.

C. S. Kumarasinghe, M. Premaratne, Q. Bao, and G. P. Agrawal, “Theoretical analysis of hot electron dynamics in nanorods,” Sci. Rep. 5, 12140 (2015).
[Crossref] [PubMed]

Bates, C. W.

Q. Y. Chen and C. W. Bates., “Geometrical factors in enhanced photoyield from small metal particles,” Phys. Rev. Lett. 57(21), 2737–2740 (1986).
[Crossref] [PubMed]

Berglund, C.

C. Berglund and W. Spicer, “Photoemission studies of copper and silver: experiment,” Phys. Rev. 136(4A), A1044–A1064 (1964).
[Crossref]

Berini, P.

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Bernardi, M.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Bian, Z.

Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, and T. Majima, “Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity,” J. Am. Chem. Soc. 136(1), 458–465 (2014).
[Crossref] [PubMed]

Brown, A. M.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Non-radiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

Catchpole, K. R.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

Celanovic, I.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(101), A144–A154 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Chen, J.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Chen, Q. Y.

Q. Y. Chen and C. W. Bates., “Geometrical factors in enhanced photoyield from small metal particles,” Phys. Rev. Lett. 57(21), 2737–2740 (1986).
[Crossref] [PubMed]

Chou, J. B.

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Demir, H. V.

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

Elfaer, A.

Fang, N. X.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Fenning, D. P.

Fowler, R. H.

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Fujitsuka, M.

Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, and T. Majima, “Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity,” J. Am. Chem. Soc. 136(1), 458–465 (2014).
[Crossref] [PubMed]

García de Arquer, F. P.

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

Goddard, W. A.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Non-radiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Govorov, A. O.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Gun’ko, Y. K.

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Guzhva, M. E. e.

R. S. Ikhsanov, V. E. e. Babicheva, I. E. e. Protsenko, A. V. e. Uskov, and M. E. e. Guzhva, “Bulk photoemission from metal films and nanoparticles,” Quantum Electron. 45(1), 50–58 (2015).
[Crossref]

Halas, N. J.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Ikhsanov, R. S.

R. S. Ikhsanov, V. E. e. Babicheva, I. E. e. Protsenko, A. V. e. Uskov, and M. E. e. Guzhva, “Bulk photoemission from metal films and nanoparticles,” Quantum Electron. 45(1), 50–58 (2015).
[Crossref]

Jermyn, A. S.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Ji, X.

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
[Crossref]

Jouiad, M.

Jung, C. H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Kanter, H.

H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B Condens. Matter 1(2), 522–536 (1970).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Kim, S. G.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Kim, S.-G.

Knight, M. W.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Konstantatos, G.

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

Krämer, S.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Kufer, D.

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

Kulkarni, V.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Kumarasinghe, C. S.

C. S. Kumarasinghe, M. Premaratne, Q. Bao, and G. P. Agrawal, “Theoretical analysis of hot electron dynamics in nanorods,” Sci. Rep. 5, 12140 (2015).
[Crossref] [PubMed]

Lee, J.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Lee, Y. E.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Lee, Y. K.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Leenheer, A. J.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

Lenert, A.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(101), A144–A154 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Lewis, N. S.

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Li, X.-H.

Lian, T.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Liu, J. G.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Louie, S. G.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Majima, T.

Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, and T. Majima, “Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity,” J. Am. Chem. Soc. 136(1), 458–465 (2014).
[Crossref] [PubMed]

Manjavacas, A.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

McBride, J. R.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

McClain, M.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

Mihi, A.

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

Misawa, H.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Moskovits, M.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Mubeen, S.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Murakoshi, K.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Mustafa, J.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Narang, P.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Non-radiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

P. Narang, R. Sundararaman, and H. A. Atwater, “Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion,” Nanophotonics 5(1), 96–111 (2016).
[Crossref]

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Neaton, J. B.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Nishijima, Y.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Nordlander, P.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Park, J.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Park, J. Y.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Premaratne, M.

C. S. Kumarasinghe, M. Premaratne, Q. Bao, and G. P. Agrawal, “Theoretical analysis of hot electron dynamics in nanorods,” Sci. Rep. 5, 12140 (2015).
[Crossref] [PubMed]

Protsenko, I. E. e.

R. S. Ikhsanov, V. E. e. Babicheva, I. E. e. Protsenko, A. V. e. Uskov, and M. E. e. Guzhva, “Bulk photoemission from metal films and nanoparticles,” Quantum Electron. 45(1), 50–58 (2015).
[Crossref]

Rinnerbauer, V.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(101), A144–A154 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Scales, C.

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Seo, H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Shao-Horn, Y.

Singh, N.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Sobhani, A.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Soljacic, M.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(101), A144–A154 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Somorjai, G. A.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Spicer, W.

C. Berglund and W. Spicer, “Photoemission studies of copper and silver: experiment,” Phys. Rev. 136(4A), A1044–A1064 (1964).
[Crossref]

Stucky, G. D.

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Sundararaman, R.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Non-radiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

P. Narang, R. Sundararaman, and H. A. Atwater, “Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion,” Nanophotonics 5(1), 96–111 (2016).
[Crossref]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Tachikawa, T.

Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, and T. Majima, “Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity,” J. Am. Chem. Soc. 136(1), 458–465 (2014).
[Crossref] [PubMed]

Ueno, K.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Urban, A. S.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Uskov, A. V. e.

R. S. Ikhsanov, V. E. e. Babicheva, I. E. e. Protsenko, A. V. e. Uskov, and M. E. e. Guzhva, “Bulk photoemission from metal films and nanoparticles,” Quantum Electron. 45(1), 50–58 (2015).
[Crossref]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Viegas, J.

Wang, E. N.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(101), A144–A154 (2014).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Wang, Y.

J. B. Chou, X.-H. Li, Y. Wang, D. P. Fenning, A. Elfaer, J. Viegas, M. Jouiad, Y. Shao-Horn, and S.-G. Kim, “Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals,” Opt. Express 24(18), A1234–A1244 (2016).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

White, T. P.

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

Wu, K.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Yeng, Y. X.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(101), A144–A154 (2014).
[Crossref] [PubMed]

Yokota, Y.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Zhang, H.

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Zhang, P.

Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, and T. Majima, “Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity,” J. Am. Chem. Soc. 136(1), 458–465 (2014).
[Crossref] [PubMed]

Zhao, H.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

Zheng, B. Y.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

ACS Nano (3)

F. P. García de Arquer, A. Mihi, D. Kufer, and G. Konstantatos, “Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures,” ACS Nano 7(4), 3581–3588 (2013).
[Crossref] [PubMed]

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Non-radiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces and geometry,” ACS Nano 10(1), 957–966 (2016).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large area plasmonic-crystal-hot-electron-based photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Adv. Mater. (1)

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. P. White and K. R. Catchpole, “Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits,” Appl. Phys. Lett. 101(7), 073905 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, and T. Majima, “Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity,” J. Am. Chem. Soc. 136(1), 458–465 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (1)

A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater, “Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates,” J. Appl. Phys. 115(13), 134301 (2014).
[Crossref]

J. Phys. Chem. C (1)

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Nano Lett. (3)

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Nano Today (1)

A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko, “Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications,” Nano Today 9(1), 85–101 (2014).
[Crossref]

Nanophotonics (1)

P. Narang, R. Sundararaman, and H. A. Atwater, “Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion,” Nanophotonics 5(1), 96–111 (2016).
[Crossref]

Nat. Commun. (4)

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky, and M. Moskovits, “An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,” Nat. Nanotechnol. 8(4), 247–251 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Opt. Express (2)

Phys. Rev. (2)

C. Berglund and W. Spicer, “Photoemission studies of copper and silver: experiment,” Phys. Rev. 136(4A), A1044–A1064 (1964).
[Crossref]

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Phys. Rev. B Condens. Matter (2)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B Condens. Matter 6(12), 4370–4379 (1972).
[Crossref]

H. Kanter, “Slow-electron mean free paths in aluminum, silver, and gold,” Phys. Rev. B Condens. Matter 1(2), 522–536 (1970).
[Crossref]

Phys. Rev. Lett. (1)

Q. Y. Chen and C. W. Bates., “Geometrical factors in enhanced photoyield from small metal particles,” Phys. Rev. Lett. 57(21), 2737–2740 (1986).
[Crossref] [PubMed]

Quantum Electron. (1)

R. S. Ikhsanov, V. E. e. Babicheva, I. E. e. Protsenko, A. V. e. Uskov, and M. E. e. Guzhva, “Bulk photoemission from metal films and nanoparticles,” Quantum Electron. 45(1), 50–58 (2015).
[Crossref]

Sci. Rep. (1)

C. S. Kumarasinghe, M. Premaratne, Q. Bao, and G. P. Agrawal, “Theoretical analysis of hot electron dynamics in nanorods,” Sci. Rep. 5, 12140 (2015).
[Crossref] [PubMed]

Science (2)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Other (3)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of MSPhC device. (a) FIB photo of MSPhC viewed at 30° angle. (b) Cross-section of MSPhC. r and d are the radius (250 nm) and depth (1 µm) of the nano-cavity. (c) Electric filed profile at cross-section of nano-cavity, obtained from FDTD simulation, which shows SPP at the Au/TiO2 interface along the cavity side wall at 590 nm.

Fig. 2
Fig. 2

(a) Reflectance and normalized photoresponse of MSPhC from 400 nm to 800 nm. The low reflectance from UV-Vis measurement and FDTD simulation indicates high absorption in this range. Value of photoresponse is normalized against the highest value at 590 nm. (b) Normalized IQE of MSPhC (symbols and blue dash line), which is normalized against the value at 2.21 eV (560 nm). The IQE is calculated with the measured photocurrent and absorption by the Au layer. Example of IQE curve (black solid line) based on Fowler’s theory with barrier height of 1.53 eV and arbitrary fitting constant.

Fig. 3
Fig. 3

(a) Ratio K= | E z | 2 / | E | 2 in the thin Au layer of MSPhC, obtained from FDTD simulation (black symbols and dash line). Analytical result of ratio K for interface electromagnetic wave between semi-infinite Au and TiO2 (red solid line). (b) Calculated momentum distribution of hot electrons at 510 nm, 580 nm and 620 nm on a surface of energy constant with Eq. (5). The scale bar shows the distribution probability normalized against uniform distribution in natural log scale. As shown in the left upper corner of (b), only hot electrons with enough normal energy component could be injected, i.e. the “escape cone” model.

Fig. 4
Fig. 4

The percentage of absorption by Au layer as a function of thickness to the Au/TiO2 interface in MSPhC by FDTD simulation. The presence of SPP traps light at the interface and increases the absorption contribution of the Au layer near the interface.

Fig. 5
Fig. 5

Normalized IQE calculated based on FDTD simulation and the modified model (red round symbol, red dash line is a 4th order polynomial fitting), Fowler’s theory (black diamond symbol) and normalized IQE of MSPhC (blue square symbol). The calculated value is normalized against the IQE at 2.21 eV with Eq. (9). Through considering the factor of anisotropic momentum distribution of hot electrons and SPP effects, the modified model fits the pattern of measured IQE of MSPhC better than the Fowler’s theory.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

η IQE =C ( hνq ϕ B ) 2 hνq ϕ B
D( E 0 +hν,hν )=ρ( E 0 )f( E 0 )ρ( E 0 +hν )f( E 0 +hν )
G( E 0 +hν,hν )= D( E 0 +hν,hν )dE E F hυ E F D( E+hν,hν )dE
| k | 2 =constant P( k x , k y , k z ) k z 2 k x 2 + k y 2 + k z 2 d k x d k y d k z = | E z | 2 | E | 2
P( θ )= 1 2 sin( θ )+ 12K4 3π cos( 2θ )
P transfer = 0 H η( h )exp( h/ l mfp )dh
l mfp 1 = l ee 1 + l ep 1
P inject ( E h )= 0 Ω escape P( θ )dθ 1 2 ( 1 q ϕ B + E F E h )+ 6K2 3π [ q ϕ B + E F E h 1 q ϕ B + E F E h ]
η IQE ( hν )= A intra A intra + A inter P transfer E F +q ϕ B E F +hν G( E h ) P inject ( E h )d E h

Metrics