Abstract

As it already made huge effect in the commercialization of silicon and other photovoltaics, interface engineering is dispensable in the current and future evolution of hybrid perovskite solar cells (PSCs) techniques. In order to solve carriers’ recombination and detention at the cathode side of planar PSCs, in this work, Ruthenium acetylacetonate (RuAcac) was successfully adopted as a reliable and stable cathode interfacial layer (CIL) to improve the inverted planar PSCs. The power conversion efficiency of the optimal devices was enhanced from 12.74% for the control device without RuAcac, to 17.15% for the RuAcac based devices, with an open circuit voltage of 1.077 V, a short circuit current density of 21.28 mA/cm2, and fill factor of 74.7% correspondingly. A series of photon-physics and microscopy protocols, including EQE, UPS, XPS, PL and SKPM, were used to discover the function of RuAcac CIL. Those results confirms an identical conclusion that RuAcac enables the formation of quasi-ohmic contact at the cathode side by eliminating the energy level barrier between the LUMO of PCBM and Fermi level of silver electrode. The low temperature and facile processed Ruthenium acetylacetonate in this work definitely offer us a robust interface-engineering way for the perovskite solar cells and also their commercialization.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
TiO2 nanotube/TiO2 nanoparticle hybrid photoanode for hole-conductor-free perovskite solar cells based on carbon counter electrodes

Jing-hua Hu, Wen-hui Liu, Ying-ping Yang, Li Zhao, Yu Qiao, Shu-han Li, Pei-han Liu, and Meng-wei Chen
Opt. Mater. Express 7(9) 3322-3331 (2017)

p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells

Ming-Hua Liu, Zheng-Ji Zhou, Pan-Pan Zhang, Qing-Wen Tian, Wen-Hui Zhou, Dong-Xing Kou, and Si-Xin Wu
Opt. Express 24(22) A1349-A1359 (2016)

Triple-stacked hole-selective layers for efficient solution-processable organic semiconducting devices

Yoon Ho Huh, O. Eun Kwon, and Byoungchoo Park
Opt. Express 23(11) A625-A639 (2015)

References

  • View by:
  • |
  • |
  • |

  1. “National Renewable Energy Labs (NREL) Efficiency Chart” (2017), http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg .
  2. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3(10), 4088–4093 (2011).
    [Crossref] [PubMed]
  3. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
    [Crossref] [PubMed]
  4. H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps,” J. Am. Chem. Soc. 136(39), 13818–13825 (2014).
    [Crossref] [PubMed]
  5. D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
    [Crossref]
  6. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
    [Crossref] [PubMed]
  7. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
    [Crossref] [PubMed]
  8. M. Sessolo and H. J. Bolink, “Perovskite solar cells join the major league,” Science 350(6263), 917 (2015).
    [Crossref] [PubMed]
  9. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
    [Crossref]
  10. H. S. Kim and N.-G. Park, “Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer,” J. Phys. Chem. Lett. 5(17), 2927–2934 (2014).
    [Crossref] [PubMed]
  11. H. Kim, K.-G. Lim, and T.-W. Lee, “Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,” Energy Environ. Sci. 9(1), 12–30 (2015).
    [Crossref]
  12. Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
    [Crossref] [PubMed]
  13. R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, and H. Zhou, “The Progress of Interface Design in Perovskite-Based Solar Cells,” Adv. Energy Mater. 6(17), 1600460 (2016).
    [Crossref]
  14. X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
    [Crossref] [PubMed]
  15. D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
    [Crossref] [PubMed]
  16. X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
    [Crossref] [PubMed]
  17. Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
    [Crossref]
  18. H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
    [Crossref]
  19. J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
    [Crossref]
  20. T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), A917–A924 (2016).
    [Crossref] [PubMed]
  21. Z. Wang, S. Yuan, D. Li, F. Jin, R. Zhang, Y. Zhan, M. Lu, S. Wang, Y. Zheng, J. Guo, Z. Fan, and L. Chen, “Influence of hydration water on CH3NH3PbI3 perovskite films prepared through one-step procedure,” Opt. Express 24(22), A1431–A1443 (2016).
    [Crossref] [PubMed]
  22. W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, “Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells,” Chem. Mater. 28(14), 4879–4883 (2016).
    [Crossref]
  23. W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
    [Crossref]
  24. F. Jiang, W. C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiO(x) Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
    [Crossref] [PubMed]
  25. S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
    [Crossref]
  26. A. R. Mohd Yusoff, M. A. Mat Teridi, and J. Jang, “Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells,” Nanoscale 8(12), 6328–6334 (2016).
    [Crossref] [PubMed]
  27. M.-H. Liu, Z.-J. Zhou, P.-P. Zhang, Q.-W. Tian, W.-H. Zhou, D.-X. Kou, and S.-X. Wu, “p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells,” Opt. Express 24(22), A1349–A1359 (2016).
    [Crossref] [PubMed]
  28. Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
    [Crossref] [PubMed]
  29. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
    [Crossref] [PubMed]
  30. B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater. 17(22), 2714–2718 (2005).
    [Crossref]
  31. F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
    [Crossref]
  32. K. Tanaka, A. Endo, T. Hashimoto, and K. Shimizu, “Studies on Ru of [Ru(acac)3], [Ru(acac)2(CH3CN)2], [Ru(acac)2(topd-O,S], and [Ru(acac)2(μ-topd-O,S,O′)] (acac = acetylacetonato and topd = 3-thioxo-2,4-pentanedione) by XPS,” Surf. Sci. Spectra 7(2), 101–113 (2000).
    [Crossref]
  33. D. J. Morgan, “Resolving ruthenium: XPS studies of common ruthenium materials,” Surf. Interface Anal. 47(11), 1072–1079 (2015).
    [Crossref]
  34. F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
    [Crossref]
  35. C.-C. Chueh, C.-Z. Li, and A. K. Y. Jen, “Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells,” Energy Environ. Sci. 8(4), 1160–1189 (2015).
    [Crossref]
  36. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
    [Crossref] [PubMed]
  37. H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater. 20(12), 2376–2382 (2008).
    [Crossref]
  38. Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
    [Crossref] [PubMed]
  39. C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, and C.-T. Chen, “Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells,” Chem. Mater. 28(1), 242–251 (2016).
    [Crossref]

2016 (12)

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, and H. Zhou, “The Progress of Interface Design in Perovskite-Based Solar Cells,” Adv. Energy Mater. 6(17), 1600460 (2016).
[Crossref]

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, and C.-T. Chen, “Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells,” Chem. Mater. 28(1), 242–251 (2016).
[Crossref]

W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, “Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells,” Chem. Mater. 28(14), 4879–4883 (2016).
[Crossref]

W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
[Crossref]

A. R. Mohd Yusoff, M. A. Mat Teridi, and J. Jang, “Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells,” Nanoscale 8(12), 6328–6334 (2016).
[Crossref] [PubMed]

T. Handa, D. M. Tex, A. Shimazaki, T. Aharen, A. Wakamiya, and Y. Kanemitsu, “Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells,” Opt. Express 24(10), A917–A924 (2016).
[Crossref] [PubMed]

M.-H. Liu, Z.-J. Zhou, P.-P. Zhang, Q.-W. Tian, W.-H. Zhou, D.-X. Kou, and S.-X. Wu, “p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells,” Opt. Express 24(22), A1349–A1359 (2016).
[Crossref] [PubMed]

Z. Wang, S. Yuan, D. Li, F. Jin, R. Zhang, Y. Zhan, M. Lu, S. Wang, Y. Zheng, J. Guo, Z. Fan, and L. Chen, “Influence of hydration water on CH3NH3PbI3 perovskite films prepared through one-step procedure,” Opt. Express 24(22), A1431–A1443 (2016).
[Crossref] [PubMed]

2015 (11)

F. Jiang, W. C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiO(x) Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref] [PubMed]

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

D. J. Morgan, “Resolving ruthenium: XPS studies of common ruthenium materials,” Surf. Interface Anal. 47(11), 1072–1079 (2015).
[Crossref]

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

C.-C. Chueh, C.-Z. Li, and A. K. Y. Jen, “Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells,” Energy Environ. Sci. 8(4), 1160–1189 (2015).
[Crossref]

H. Kim, K.-G. Lim, and T.-W. Lee, “Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,” Energy Environ. Sci. 9(1), 12–30 (2015).
[Crossref]

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
[Crossref] [PubMed]

D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
[Crossref]

M. Sessolo and H. J. Bolink, “Perovskite solar cells join the major league,” Science 350(6263), 917 (2015).
[Crossref] [PubMed]

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

2014 (8)

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
[Crossref] [PubMed]

H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps,” J. Am. Chem. Soc. 136(39), 13818–13825 (2014).
[Crossref] [PubMed]

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

H. S. Kim and N.-G. Park, “Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer,” J. Phys. Chem. Lett. 5(17), 2927–2934 (2014).
[Crossref] [PubMed]

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

2013 (1)

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

2012 (1)

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

2011 (1)

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3(10), 4088–4093 (2011).
[Crossref] [PubMed]

2008 (1)

H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater. 20(12), 2376–2382 (2008).
[Crossref]

2006 (1)

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

2005 (1)

B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater. 17(22), 2714–2718 (2005).
[Crossref]

2000 (1)

K. Tanaka, A. Endo, T. Hashimoto, and K. Shimizu, “Studies on Ru of [Ru(acac)3], [Ru(acac)2(CH3CN)2], [Ru(acac)2(topd-O,S], and [Ru(acac)2(μ-topd-O,S,O′)] (acac = acetylacetonato and topd = 3-thioxo-2,4-pentanedione) by XPS,” Surf. Sci. Spectra 7(2), 101–113 (2000).
[Crossref]

Aharen, T.

Alcocer, M. J. P.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Ameri, T.

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Ashraful, I.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Azimi, H.

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Baek, N. S.

H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater. 20(12), 2376–2382 (2008).
[Crossref]

Bag, M.

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

Bai, Y.

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

Baran, D.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Bi, C.

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Bi, E.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Bolink, H. J.

M. Sessolo and H. J. Bolink, “Perovskite solar cells join the major league,” Science 350(6263), 917 (2015).
[Crossref] [PubMed]

Brabec, C. J.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Bronnbauer, C.

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

Chan Kim, Y.

S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Chang, C.-Y.

C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, and C.-T. Chen, “Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells,” Chem. Mater. 28(1), 242–251 (2016).
[Crossref]

Chang, Y.-C.

C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, and C.-T. Chen, “Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells,” Chem. Mater. 28(1), 242–251 (2016).
[Crossref]

Chen, C.-T.

C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, and C.-T. Chen, “Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells,” Chem. Mater. 28(1), 242–251 (2016).
[Crossref]

Chen, H.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Chen, L.

Chen, S.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Chen, W.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, “Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells,” Chem. Mater. 28(14), 4879–4883 (2016).
[Crossref]

W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
[Crossref]

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Cheng, J.

F. Jiang, W. C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiO(x) Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref] [PubMed]

Choy, W. C. H.

F. Jiang, W. C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiO(x) Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref] [PubMed]

Chueh, C.-C.

C.-C. Chueh, C.-Z. Li, and A. K. Y. Jen, “Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells,” Energy Environ. Sci. 8(4), 1160–1189 (2015).
[Crossref]

Cooke, D. G.

D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
[Crossref]

Deng, Y.

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

Dong, Q.

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

Droz, C.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Emrick, T.

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

Endo, A.

K. Tanaka, A. Endo, T. Hashimoto, and K. Shimizu, “Studies on Ru of [Ru(acac)3], [Ru(acac)2(CH3CN)2], [Ru(acac)2(topd-O,S], and [Ru(acac)2(μ-topd-O,S,O′)] (acac = acetylacetonato and topd = 3-thioxo-2,4-pentanedione) by XPS,” Surf. Sci. Spectra 7(2), 101–113 (2000).
[Crossref]

Eperon, G. E.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Fan, R.

R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, and H. Zhou, “The Progress of Interface Design in Perovskite-Based Solar Cells,” Adv. Energy Mater. 6(17), 1600460 (2016).
[Crossref]

Fan, Z.

Forberich, K.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

Forrest, S. R.

B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater. 17(22), 2714–2718 (2005).
[Crossref]

Grancini, G.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Grätzel, M.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Gu, R.

W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
[Crossref]

Guo, F.

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

Guo, J.

Han, L.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Handa, T.

Hartmeier, B.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Hashimoto, T.

K. Tanaka, A. Endo, T. Hashimoto, and K. Shimizu, “Studies on Ru of [Ru(acac)3], [Ru(acac)2(CH3CN)2], [Ru(acac)2(topd-O,S], and [Ru(acac)2(μ-topd-O,S,O′)] (acac = acetylacetonato and topd = 3-thioxo-2,4-pentanedione) by XPS,” Surf. Sci. Spectra 7(2), 101–113 (2000).
[Crossref]

Hau, S. K.

H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater. 20(12), 2376–2382 (2008).
[Crossref]

Hayase, S.

H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps,” J. Am. Chem. Soc. 136(39), 13818–13825 (2014).
[Crossref] [PubMed]

He, Z.

W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, “Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells,” Chem. Mater. 28(14), 4879–4883 (2016).
[Crossref]

W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
[Crossref]

Herz, L. M.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Heumueller, T.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Holmes, R. J.

B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater. 17(22), 2714–2718 (2005).
[Crossref]

Hou, J.

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
[Crossref] [PubMed]

Hou, X.

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Hou, Y.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Huang, J.

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Huang, W.-K.

C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, and C.-T. Chen, “Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells,” Chem. Mater. 28(1), 242–251 (2016).
[Crossref]

Huang, Y.

R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, and H. Zhou, “The Progress of Interface Design in Perovskite-Based Solar Cells,” Adv. Energy Mater. 6(17), 1600460 (2016).
[Crossref]

Im, J. H.

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3(10), 4088–4093 (2011).
[Crossref] [PubMed]

Jang, J.

A. R. Mohd Yusoff, M. A. Mat Teridi, and J. Jang, “Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells,” Nanoscale 8(12), 6328–6334 (2016).
[Crossref] [PubMed]

Jen, A. K. Y.

C.-C. Chueh, C.-Z. Li, and A. K. Y. Jen, “Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells,” Energy Environ. Sci. 8(4), 1160–1189 (2015).
[Crossref]

H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater. 20(12), 2376–2382 (2008).
[Crossref]

Jeon, N. J.

S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Jia, X.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

Jiang, F.

F. Jiang, W. C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiO(x) Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref] [PubMed]

Jin, F.

Johnston, M. B.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

Kanatzidis, M.

D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
[Crossref]

Kanemitsu, Y.

Kim, H.

H. Kim, K.-G. Lim, and T.-W. Lee, “Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,” Energy Environ. Sci. 9(1), 12–30 (2015).
[Crossref]

Kim, H. S.

H. S. Kim and N.-G. Park, “Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer,” J. Phys. Chem. Lett. 5(17), 2927–2934 (2014).
[Crossref] [PubMed]

Kim, P.

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

Kou, D.-X.

Kraft, M.

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Lee, C. R.

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3(10), 4088–4093 (2011).
[Crossref] [PubMed]

Lee, J. W.

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3(10), 4088–4093 (2011).
[Crossref] [PubMed]

Lee, K.-T.

C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, and C.-T. Chen, “Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells,” Chem. Mater. 28(1), 242–251 (2016).
[Crossref]

Lee, M. M.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Lee, T.-W.

H. Kim, K.-G. Lim, and T.-W. Lee, “Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,” Energy Environ. Sci. 9(1), 12–30 (2015).
[Crossref]

Leijtens, T.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Li, C.-Z.

C.-C. Chueh, C.-Z. Li, and A. K. Y. Jen, “Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells,” Energy Environ. Sci. 8(4), 1160–1189 (2015).
[Crossref]

Li, D.

Li, J.

B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater. 17(22), 2714–2718 (2005).
[Crossref]

Li, L.

R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, and H. Zhou, “The Progress of Interface Design in Perovskite-Based Solar Cells,” Adv. Energy Mater. 6(17), 1600460 (2016).
[Crossref]

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Li, N.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Li, S.

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
[Crossref] [PubMed]

Li, X.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

F. Jiang, W. C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiO(x) Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref] [PubMed]

Li, Y.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
[Crossref] [PubMed]

Li, Y.-Q.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

Liao, L.-S.

D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
[Crossref] [PubMed]

Lim, K.-G.

H. Kim, K.-G. Lim, and T.-W. Lee, “Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,” Energy Environ. Sci. 9(1), 12–30 (2015).
[Crossref]

Lin, J.

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
[Crossref] [PubMed]

Liu, J.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Liu, M.-H.

Liu, X.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

Lu, H.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

Lu, M.

Luechinger, N. A.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Luo, Q.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

Ma, C.-Q.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

Ma, H.

H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater. 20(12), 2376–2382 (2008).
[Crossref]

Mat Teridi, M. A.

A. R. Mohd Yusoff, M. A. Mat Teridi, and J. Jang, “Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells,” Nanoscale 8(12), 6328–6334 (2016).
[Crossref] [PubMed]

Matt, G. J.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Meillaud, F.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Menelaou, C.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Miazza, C.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Min, J.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

Miyasaka, T.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Mohd Yusoff, A. R.

A. R. Mohd Yusoff, M. A. Mat Teridi, and J. Jang, “Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells,” Nanoscale 8(12), 6328–6334 (2016).
[Crossref] [PubMed]

Morgan, D. J.

D. J. Morgan, “Resolving ruthenium: XPS studies of common ruthenium materials,” Surf. Interface Anal. 47(11), 1072–1079 (2015).
[Crossref]

Murakami, T. N.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Noh, J. H.

S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Oga, H.

H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps,” J. Am. Chem. Soc. 136(39), 13818–13825 (2014).
[Crossref] [PubMed]

Ogomi, Y.

H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps,” J. Am. Chem. Soc. 136(39), 13818–13825 (2014).
[Crossref] [PubMed]

Osvet, A.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Page, Z. A.

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

Park, N. G.

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3(10), 4088–4093 (2011).
[Crossref] [PubMed]

Park, N.-G.

H. S. Kim and N.-G. Park, “Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer,” J. Phys. Chem. Lett. 5(17), 2927–2934 (2014).
[Crossref] [PubMed]

Park, S. W.

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3(10), 4088–4093 (2011).
[Crossref] [PubMed]

Petrozza, A.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Ponseca, C. S.

D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
[Crossref]

Przybilla, T.

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Qian, D.

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
[Crossref] [PubMed]

Quiroz, C. O. R.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Ramirez Quiroz, C. O.

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

Rand, B. P.

B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater. 17(22), 2714–2718 (2005).
[Crossref]

Renna, L. A.

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

Richter, M.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Russell, T. P.

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

Ryu, S.

S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Saeki, A.

H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps,” J. Am. Chem. Soc. 136(39), 13818–13825 (2014).
[Crossref] [PubMed]

Scherf, U.

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Schweizer, P.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Seki, S.

H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps,” J. Am. Chem. Soc. 136(39), 13818–13825 (2014).
[Crossref] [PubMed]

Seo, J.

S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Seok, S. I.

S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Sessolo, M.

M. Sessolo and H. J. Bolink, “Perovskite solar cells join the major league,” Science 350(6263), 917 (2015).
[Crossref] [PubMed]

Shah, A.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Shao, Y.

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Shen, L.

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

Shi, X.-B.

D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
[Crossref] [PubMed]

Shimazaki, A.

Shimizu, K.

K. Tanaka, A. Endo, T. Hashimoto, and K. Shimizu, “Studies on Ru of [Ru(acac)3], [Ru(acac)2(CH3CN)2], [Ru(acac)2(topd-O,S], and [Ru(acac)2(μ-topd-O,S,O′)] (acac = acetylacetonato and topd = 3-thioxo-2,4-pentanedione) by XPS,” Surf. Sci. Spectra 7(2), 101–113 (2000).
[Crossref]

Snaith, H. J.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Song, B.

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

Spiecker, E.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Stoumpos, C.

D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
[Crossref]

Stranks, S. D.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

Stubhan, T.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Sun, G.

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Sundstrom, V.

D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
[Crossref]

Tan, Z.

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
[Crossref] [PubMed]

Tanaka, K.

K. Tanaka, A. Endo, T. Hashimoto, and K. Shimizu, “Studies on Ru of [Ru(acac)3], [Ru(acac)2(CH3CN)2], [Ru(acac)2(topd-O,S], and [Ru(acac)2(μ-topd-O,S,O′)] (acac = acetylacetonato and topd = 3-thioxo-2,4-pentanedione) by XPS,” Surf. Sci. Spectra 7(2), 101–113 (2000).
[Crossref]

Teuscher, J.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

Tex, D. M.

Thompson, M. E.

B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater. 17(22), 2714–2718 (2005).
[Crossref]

Tian, Q.-W.

Tu, X.

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Vallat-Sauvain, E.

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Valverde-Chávez, D.

D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
[Crossref]

Venkataraman, D.

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

Wakamiya, A.

Wan, Q.

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

Wang, D.

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

Wang, F.

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
[Crossref] [PubMed]

Wang, H.

W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
[Crossref]

Wang, L.

R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, and H. Zhou, “The Progress of Interface Design in Perovskite-Based Solar Cells,” Adv. Energy Mater. 6(17), 1600460 (2016).
[Crossref]

Wang, Q.

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

Wang, S.

Wang, Z.

Wang, Z.-K.

D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
[Crossref] [PubMed]

Wehrenfennig, C.

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

Wei, W.

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

Winter, B.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

Wu, J.-L.

C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, and C.-T. Chen, “Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells,” Chem. Mater. 28(1), 242–251 (2016).
[Crossref]

Wu, S.-X.

Wu, Y.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Xiao, Z.

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Xie, Z.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

Xu, L.

W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, “Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells,” Chem. Mater. 28(14), 4879–4883 (2016).
[Crossref]

W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
[Crossref]

Xu, M.-F.

D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
[Crossref] [PubMed]

Xu, Q.

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

Xu, Q.-Y.

D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
[Crossref] [PubMed]

Xu, Z.

W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
[Crossref]

Xue, J.

B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater. 17(22), 2714–2718 (2005).
[Crossref]

Yan, L.

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

Yang, W. S.

S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

Yang, X.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Yang, Y.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

Yartsev, A.

D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
[Crossref]

Yip, H.-L.

H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater. 20(12), 2376–2382 (2008).
[Crossref]

Yu, H.

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

Yu, Y.

W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, “Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells,” Chem. Mater. 28(14), 4879–4883 (2016).
[Crossref]

Yuan, D.-X.

D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
[Crossref] [PubMed]

Yuan, S.

Yuan, X.-D.

D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
[Crossref] [PubMed]

Yuan, Y.

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Yue, Y.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Zhan, Y.

Zhang, D.

F. Jiang, W. C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiO(x) Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref] [PubMed]

Zhang, G.

W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, “Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells,” Chem. Mater. 28(14), 4879–4883 (2016).
[Crossref]

W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
[Crossref]

Zhang, H.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

Zhang, L.

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

Zhang, P.-P.

Zhang, R.

Zhang, W.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

Zhang, Z.-G.

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

Zheng, G.

R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, and H. Zhou, “The Progress of Interface Design in Perovskite-Based Solar Cells,” Adv. Energy Mater. 6(17), 1600460 (2016).
[Crossref]

Zheng, Y.

Zhou, H.

R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, and H. Zhou, “The Progress of Interface Design in Perovskite-Based Solar Cells,” Adv. Energy Mater. 6(17), 1600460 (2016).
[Crossref]

Zhou, W.-H.

Zhou, Y.

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

Zhou, Z.-J.

Zhu, Y.

W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, “Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells,” Chem. Mater. 28(14), 4879–4883 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (2)

X. Jia, L. Zhang, Q. Luo, H. Lu, X. Li, Z. Xie, Y. Yang, Y.-Q. Li, X. Liu, and C.-Q. Ma, “Power Conversion Efficiency and Device Stability Improvement of Inverted Perovskite Solar Cells by Using a ZnO:PFN Composite Cathode Buffer Layer,” ACS Appl. Mater. Interfaces 8(28), 18410–18417 (2016).
[Crossref] [PubMed]

X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, and Y. Li, “Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells,” ACS Appl. Mater. Interfaces 7(11), 6230–6237 (2015).
[Crossref] [PubMed]

Adv. Energy Mater. (2)

Y. Liu, M. Bag, L. A. Renna, Z. A. Page, P. Kim, T. Emrick, D. Venkataraman, and T. P. Russell, “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells,” Adv. Energy Mater. 6(2), 1501606 (2016).
[Crossref]

R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, and H. Zhou, “The Progress of Interface Design in Perovskite-Based Solar Cells,” Adv. Energy Mater. 6(17), 1600460 (2016).
[Crossref]

Adv. Mater. (5)

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Adv. Mater. 26(10), 1584–1589 (2014).
[Crossref] [PubMed]

Y. Hou, W. Chen, D. Baran, T. Stubhan, N. A. Luechinger, B. Hartmeier, M. Richter, J. Min, S. Chen, C. O. R. Quiroz, N. Li, H. Zhang, T. Heumueller, G. J. Matt, A. Osvet, K. Forberich, Z.-G. Zhang, Y. Li, B. Winter, P. Schweizer, E. Spiecker, and C. J. Brabec, “Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells,” Adv. Mater. 28(25), 5112–5120 (2016).
[Crossref] [PubMed]

B. P. Rand, J. Li, J. Xue, R. J. Holmes, M. E. Thompson, and S. R. Forrest, “Organic Double-Heterostructure Photovoltaic Cells Employing Thick Tris(acetylacetonato)ruthenium(III) Exciton-Blocking Layers,” Adv. Mater. 17(22), 2714–2718 (2005).
[Crossref]

H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater. 20(12), 2376–2382 (2008).
[Crossref]

F. Jiang, W. C. H. Choy, X. Li, D. Zhang, and J. Cheng, “Post-treatment-Free Solution-Processed Non-stoichiometric NiO(x) Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices,” Adv. Mater. 27(18), 2930–2937 (2015).
[Crossref] [PubMed]

Chem. Mater. (4)

C.-Y. Chang, W.-K. Huang, J.-L. Wu, Y.-C. Chang, K.-T. Lee, and C.-T. Chen, “Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells,” Chem. Mater. 28(1), 242–251 (2016).
[Crossref]

W. Chen, Y. Zhu, Y. Yu, L. Xu, G. Zhang, and Z. He, “Low Cost and Solution Processed Interfacial Layer Based on Poly(2-ethyl-2-oxazoline) Nanodots for Inverted Perovskite Solar Cells,” Chem. Mater. 28(14), 4879–4883 (2016).
[Crossref]

H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, “Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer,” Chem. Mater. 26(18), 5190–5193 (2014).
[Crossref]

J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, and C. J. Brabec, “Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance,” Chem. Mater. 27(1), 227–234 (2015).
[Crossref]

Energy Environ. Sci. (5)

H. Kim, K.-G. Lim, and T.-W. Lee, “Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers,” Energy Environ. Sci. 9(1), 12–30 (2015).
[Crossref]

D. Valverde-Chávez, C. S. Ponseca, C. Stoumpos, A. Yartsev, M. Kanatzidis, V. Sundstrom, and D. G. Cooke, “Intrinsic femtosecond charge generation dynamics in single crystal CH3NH3PbI3,” Energy Environ. Sci. 8(12), 3700–3707 (2015).
[Crossref]

S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, “Voltage Output of Efficient Perovskite Solar Cells with high Open-Circuit Voltage and Fill Factor,” Energy Environ. Sci. 7(8), 2614–2618 (2014).
[Crossref]

F. Wang, Z. Tan, and Y. Li, “Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells,” Energy Environ. Sci. 8(4), 1059–1091 (2015).
[Crossref]

C.-C. Chueh, C.-Z. Li, and A. K. Y. Jen, “Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells,” Energy Environ. Sci. 8(4), 1160–1189 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved Understanding of the Electronic and Energetic Landscapes of Perovskite Solar Cells: High Local Charge Carrier Mobility, Reduced Recombination, and Extremely Shallow Traps,” J. Am. Chem. Soc. 136(39), 13818–13825 (2014).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

F. Wang, Q. Xu, Z. Tan, L. Li, S. Li, X. Hou, G. Sun, X. Tu, J. Hou, and Y. Li, “Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer,” J. Mater. Chem. A Mater. Energy Sustain. 2(5), 1318–1324 (2014).
[Crossref]

J. Phys. Chem. Lett. (1)

H. S. Kim and N.-G. Park, “Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer,” J. Phys. Chem. Lett. 5(17), 2927–2934 (2014).
[Crossref] [PubMed]

Materials Today Energy (1)

W. Chen, G. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, and Z. He, “Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer,” Materials Today Energy 1–2, 1–10 (2016).
[Crossref]

Nanoscale (2)

A. R. Mohd Yusoff, M. A. Mat Teridi, and J. Jang, “Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells,” Nanoscale 8(12), 6328–6334 (2016).
[Crossref] [PubMed]

J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale 3(10), 4088–4093 (2011).
[Crossref] [PubMed]

Nat. Commun. (2)

Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, “Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene,” Nat. Commun. 7, 12806 (2016).
[Crossref] [PubMed]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun. 5, 5784 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Chem. Chem. Phys. (1)

D.-X. Yuan, X.-D. Yuan, Q.-Y. Xu, M.-F. Xu, X.-B. Shi, Z.-K. Wang, and L.-S. Liao, “A solution-processed bathocuproine cathode interfacial layer for high-performance bromine-iodine perovskite solar cells,” Phys. Chem. Chem. Phys. 17(40), 26653–26658 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Tan, S. Li, F. Wang, D. Qian, J. Lin, J. Hou, and Y. Li, “High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer,” Sci. Rep. 4, 4691 (2014).
[Crossref] [PubMed]

Science (4)

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers,” Science 350(6263), 944–948 (2015).
[Crossref] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science 338(6107), 643–647 (2012).
[Crossref] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science 342(6156), 341–344 (2013).
[Crossref] [PubMed]

M. Sessolo and H. J. Bolink, “Perovskite solar cells join the major league,” Science 350(6263), 917 (2015).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, “Efficiency limits for single-junction and tandem solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 2952–2959 (2006).
[Crossref]

Surf. Interface Anal. (1)

D. J. Morgan, “Resolving ruthenium: XPS studies of common ruthenium materials,” Surf. Interface Anal. 47(11), 1072–1079 (2015).
[Crossref]

Surf. Sci. Spectra (1)

K. Tanaka, A. Endo, T. Hashimoto, and K. Shimizu, “Studies on Ru of [Ru(acac)3], [Ru(acac)2(CH3CN)2], [Ru(acac)2(topd-O,S], and [Ru(acac)2(μ-topd-O,S,O′)] (acac = acetylacetonato and topd = 3-thioxo-2,4-pentanedione) by XPS,” Surf. Sci. Spectra 7(2), 101–113 (2000).
[Crossref]

Other (1)

“National Renewable Energy Labs (NREL) Efficiency Chart” (2017), http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Device architecture sketch of the p-i-n planar perovskte solar cells; b) Absorption spectrum of the RuAcac CIL thin film on quartz (insert is the chemical structure of RuAcac); c) UPS spectrum of the RuAcac thin film deposited on silicon substrate. The corresponding cutoff and onset energy values were shown as well; d) energy level diagram of different layers used in the device; e) X-ray diffraction (XRD) patterns of perovskite layer on NiOx/ITO substrates; f) scanning electron microscopy (SEM) characteristic of the perovskite films; g) Cross-section SEM morphology of an intact perovskite solar cell.

Fig. 2
Fig. 2

XPS analysis of the RuAcac powder and the corresponding films coated on silicon substrates. a) Survey scan; b) Ru 3d; c) C 1s; d) O 1s.

Fig. 3
Fig. 3

Surface SEM characteristics of the perovskite/PCBM (a) and perovskite/PCBM/RuAcac (c); Energy-dispersive X-ray spectroscopy (EDS) mapping of Ru for the perovskite/PCBM (b) and perovskite/PCBM/RuAcac (d).

Fig. 4
Fig. 4

a) J-V characteristics of our perovskite solar cells with and without RuAcac CIL under 100 mW/cm2 illumination at forward and backward scanning mode; b) stable photocurrent density output for the Ag reference and RuAcac/Ag optimal device recorded at maximum power point (0.88V); c) EQE spectra and the corresponding integrated short circuit current density spectra of our perovskite solar cells with and without RuAcac CIL.

Fig. 5
Fig. 5

SKPM images for the pure Ag (a) and RuAcac modified Ag (b) films coated on silicon substrates; c) Surface potential profiles (Vsp) extracted from the SKPM images at (a) and (b); d) UPS spectra of the pure Ag and RuAcac coated Ag films coated on silicon substrates. The work function of Ag was reduced after RuAcac modification.

Fig. 6
Fig. 6

a) Room temperature photoluminescence (PL) spectra of the pure perovskite, perovskite/PCBM and perovskite/PCBM/RuAcac samples; b) PL decay curves of the corresponding samples presented at (a).

Tables (1)

Tables Icon

Table 1 Summary of the photovoltaic parameters for the inverted planar perovskite solar cells with and without various RuAcac interfacial layers under AM 1.5G simulated sun light illumination (100 mW/cm2).

Metrics