Abstract

In this paper, we present a one-dimensional periodic microstructure for multiband selective absorbers of thermal radiation. The microstructure is made of Ag/SiO2/Ag core/shell coaxial cylinders horizontally lying on top of a SiO2 dielectric spacer and an opaque silver substrate. The spectral-directional absorptivity of the proposed structure was numerically investigated with the finite element based Comsol Multiphysics software. Multiband selective absorption in the wavenumber range from 2500 to 20000 cm−1 for TM-wave incidence was obtained. Physical mechanisms responsible for the multiband selective absorption were elucidated due to the resonance of magnetic polaritons in the SiO2 spacer shell, excitation of surface plasmon polaritons at the SiO2/Ag interface, and the effect of Wood’s anomaly. Furthermore, the effects of a silver core radius, spacer shell thickness, a confocal elliptical core/shell cylinder on the property of multiband absorption, and the absorptivity of the structure with one core/four shells coaxial cylinders were explored.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Perfect selective metamaterial solar absorbers

Hao Wang and Liping Wang
Opt. Express 21(S6) A1078-A1093 (2013)

Surface and magnetic polaritons on two-dimensional nanoslab-aligned multilayer structure

Zhijian Zhang, Keunhan Park, and Bong Jae Lee
Opt. Express 19(17) 16375-16389 (2011)

Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter

Jinlin Song, Mengting Si, Qiang Cheng, and Zixue Luo
Appl. Opt. 55(6) 1284-1290 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
    [Crossref]
  2. J. J. Foley, C. Ungaro, K. Sun, M. C. Gupta, and S. K. Gray, “Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications,” Opt. Express 23(24), A1373–A1387 (2015).
    [Crossref] [PubMed]
  3. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [Crossref]
  4. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
    [Crossref] [PubMed]
  5. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
    [Crossref] [PubMed]
  6. J. Fu, B. Park, and Y. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48(23), 4637–4649 (2009).
    [Crossref] [PubMed]
  7. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  8. Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
    [Crossref]
  9. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [Crossref]
  10. Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
    [Crossref]
  11. J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
    [Crossref]
  12. S. Han and B. J. Lee, “Control of thermal radiative properties using two-dimensional complex gratings,” Int. J. Heat Mass Transfer 84, 713–721 (2015).
    [Crossref]
  13. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” JOSA B 30(3), 656–662 (2013).
    [Crossref]
  14. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
    [Crossref] [PubMed]
  15. G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
    [Crossref]
  16. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
    [Crossref]
  17. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
    [Crossref] [PubMed]
  18. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
    [Crossref]
  19. A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
    [Crossref] [PubMed]
  20. T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
    [Crossref] [PubMed]
  21. F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for Electrical Generation of Surface Plasmon Polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
    [Crossref] [PubMed]
  22. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
    [Crossref] [PubMed]
  23. H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
    [Crossref] [PubMed]
  24. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  25. R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
    [Crossref]
  26. L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near-infrared wavelengths,” Opt. Express 21(S1), A111–A122 (2013).
    [Crossref] [PubMed]
  27. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
    [Crossref] [PubMed]
  28. R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
    [Crossref]
  29. H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys. 45(20), 205101 (2012).
    [Crossref]
  30. C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
    [Crossref]
  31. R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38(23), 4988–4990 (2013).
    [Crossref] [PubMed]
  32. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
    [Crossref]
  33. R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
    [Crossref] [PubMed]
  34. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
    [Crossref]
  35. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
    [Crossref] [PubMed]
  36. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  37. Y. Zhao and C. J. Fu, “Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 182, 35–44 (2016).
    [Crossref]
  38. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [Crossref] [PubMed]
  39. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [Crossref] [PubMed]
  40. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35(20), 3378–3380 (2010).
    [Crossref] [PubMed]
  41. Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
    [Crossref] [PubMed]
  42. X. J. Wang, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Angle-resolved reflectance of obliquely aligned silver nanorods,” Appl. Opt. 51(10), 1521–1531 (2012).
    [Crossref] [PubMed]
  43. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  44. B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
    [Crossref]
  45. Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
    [Crossref]
  46. P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
    [Crossref]
  47. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
    [Crossref] [PubMed]
  48. X. M. Jia, “Calculation of the electric field and capacitance of a confocal elliptic capacitor,” College Phys. 28(9), 22–24 (2009).

2016 (2)

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for Electrical Generation of Surface Plasmon Polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref] [PubMed]

Y. Zhao and C. J. Fu, “Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 182, 35–44 (2016).
[Crossref]

2015 (4)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

S. Han and B. J. Lee, “Control of thermal radiative properties using two-dimensional complex gratings,” Int. J. Heat Mass Transfer 84, 713–721 (2015).
[Crossref]

J. J. Foley, C. Ungaro, K. Sun, M. C. Gupta, and S. K. Gray, “Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications,” Opt. Express 23(24), A1373–A1387 (2015).
[Crossref] [PubMed]

2014 (8)

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
[Crossref]

H. Wang, K. O’Dea, and L. Wang, “Selective absorption of visible light in film-coupled nanoparticles by exciting magnetic resonance,” Opt. Lett. 39(6), 1457–1460 (2014).
[Crossref] [PubMed]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
[Crossref] [PubMed]

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
[Crossref]

2013 (7)

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” JOSA B 30(3), 656–662 (2013).
[Crossref]

L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near-infrared wavelengths,” Opt. Express 21(S1), A111–A122 (2013).
[Crossref] [PubMed]

Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38(23), 4988–4990 (2013).
[Crossref] [PubMed]

2012 (10)

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys. 45(20), 205101 (2012).
[Crossref]

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

X. J. Wang, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Angle-resolved reflectance of obliquely aligned silver nanorods,” Appl. Opt. 51(10), 1521–1531 (2012).
[Crossref] [PubMed]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
[Crossref] [PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (6)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[Crossref]

X. M. Jia, “Calculation of the electric field and capacitance of a confocal elliptic capacitor,” College Phys. 28(9), 22–24 (2009).

Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
[Crossref] [PubMed]

J. Fu, B. Park, and Y. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48(23), 4637–4649 (2009).
[Crossref] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (2)

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[Crossref]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Abbas, M. N.

Abell, J. L.

Agrawal, M.

Albrektsen, O.

Bao, H.

Bigourdan, F.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for Electrical Generation of Surface Plasmon Polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref] [PubMed]

Bouchon, P.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Bozhevolnyi, S. I.

Cao, Y.

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[Crossref]

Chakrabarty, A.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
[Crossref] [PubMed]

Chang, Y. C.

Chen, G.

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
[Crossref]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Chen, K.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Chen, L.

Chen, Y. B.

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[Crossref]

Cheng, C. W.

Cheng, Q.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Chiu, C. W.

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Dao, T. D.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

de Miollis, F.

Deng, H.

Desieres, Y.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Ding, W.

Elliott, S. R.

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Espiau de Lamaestre, R.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Fan, S.

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Fang, N. X.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Feng, R.

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Foley, J. J.

Fu, C. J.

Y. Zhao and C. J. Fu, “Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 182, 35–44 (2016).
[Crossref]

Fu, J.

Fung, K. H.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Gao, J.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gray, S. K.

Greffet, J. J.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for Electrical Generation of Surface Plasmon Polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref] [PubMed]

Guillet, J. P.

Guo, J.

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” JOSA B 30(3), 656–662 (2013).
[Crossref]

Gupta, M. C.

Haidar, R.

C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Haïdar, R.

Han, S.

S. Han and B. J. Lee, “Control of thermal radiative properties using two-dimensional complex gratings,” Int. J. Heat Mass Transfer 84, 713–721 (2015).
[Crossref]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
[Crossref] [PubMed]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38(7), 1179–1181 (2013).
[Crossref] [PubMed]

Hendrickson, J.

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” JOSA B 30(3), 656–662 (2013).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Hugonin, J. P.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for Electrical Generation of Surface Plasmon Polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref] [PubMed]

Hutter, T.

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Ishii, S.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Jaeck, J.

C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Jia, X. M.

X. M. Jia, “Calculation of the electric field and capacitance of a confocal elliptic capacitor,” College Phys. 28(9), 22–24 (2009).

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Jiao, X.

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Keochlin, C.

C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Kitajima, M.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Koechlin, C.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Kumar, A.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Lafosse, X.

C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Lai, K. T.

Le Perchec, J.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Lee, B. J.

S. Han and B. J. Lee, “Control of thermal radiative properties using two-dimensional complex gratings,” Int. J. Heat Mass Transfer 84, 713–721 (2015).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Lee, H. M.

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys. 45(20), 205101 (2012).
[Crossref]

Li, Q.

Liang, Y.

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

Lin, C.

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Liu, L.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Mahajan, S.

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Marquier, F.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for Electrical Generation of Surface Plasmon Polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref] [PubMed]

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Meng, L.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Minkowski, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
[Crossref] [PubMed]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Mounaix, P.

Nabatame, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Nagao, T.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Nielsen, M. G.

O’Dea, K.

Ohi, A.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Pardo, F.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Park, B.

Pelouard, J. L.

Pelouard, J.-L.

C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Peumans, P.

Pors, A.

Povinelli, M. L.

Qiu, J.

Qiu, M.

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Rochat, N.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Ruan, X.

Sauvan, C.

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for Electrical Generation of Surface Plasmon Polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref] [PubMed]

Sergeant, N. P.

Shih, M. H.

Shuai, Y.

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Song, J.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sun, K.

Tan, H.

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Tsai, D. P.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Ungaro, C.

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Wang, C. M.

Wang, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
[Crossref] [PubMed]

Wang, H.

Wang, L.

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Wang, X. J.

Wei, Q. H.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Wu, H.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Wu, J. C.

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys. 45(20), 205101 (2012).
[Crossref]

Xu, J.

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

Xuan, Y.

Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
[Crossref]

Yahiaoui, R.

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, X.

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

Zhang, B.

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” JOSA B 30(3), 656–662 (2013).
[Crossref]

Zhang, Y.

Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
[Crossref]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

X. J. Wang, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, “Angle-resolved reflectance of obliquely aligned silver nanorods,” Appl. Opt. 51(10), 1521–1531 (2012).
[Crossref] [PubMed]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

Zhao, D.

Zhao, J.

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Zhao, Y.

Y. Zhao and C. J. Fu, “Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 182, 35–44 (2016).
[Crossref]

J. Fu, B. Park, and Y. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48(23), 4637–4649 (2009).
[Crossref] [PubMed]

Zhao, Y. P.

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5(6), 4641–4647 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers Fabricated by colloidal mask etching of Al–Al2O3–Al trilayers,” ACS Photonics 2(7), 964–970 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (8)

P. B. Catrysse and S. Fan, “Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry,” Appl. Phys. Lett. 94(23), 231111 (2009).
[Crossref]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

C. Keochlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J.-L. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett. 99(24), 241104 (2011).
[Crossref]

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100(11), 113305 (2012).
[Crossref]

Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99(25), 253101 (2011).
[Crossref]

College Phys. (1)

X. M. Jia, “Calculation of the electric field and capacitance of a confocal elliptic capacitor,” College Phys. 28(9), 22–24 (2009).

Int. J. Heat Mass Transfer (1)

S. Han and B. J. Lee, “Control of thermal radiative properties using two-dimensional complex gratings,” Int. J. Heat Mass Transfer 84, 713–721 (2015).
[Crossref]

J. Opt. (1)

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15(5), 055106 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D Appl. Phys. 45(20), 205101 (2012).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (5)

J. Song, H. Wu, Q. Cheng, and J. Zhao, “1D trilayer films grating with W/SiO2/W structure as a wavelength-selective emitter for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 158, 136–144 (2015).
[Crossref]

Y. Shuai, H. Tan, and Y. Liang, “Polariton-enhanced emittance of metallic–dielectric multilayer structures for selective thermal emitters,” J. Quant. Spectrosc. Radiat. Transf. 135, 50–57 (2014).
[Crossref]

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transf. 135, 81–89 (2014).
[Crossref]

Y. Xuan and Y. Zhang, “Investigation on the physical mechanism of magnetic plasmons polaritons,” J. Quant. Spectrosc. Radiat. Transf. 132, 43–51 (2014).
[Crossref]

Y. Zhao and C. J. Fu, “Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications,” J. Quant. Spectrosc. Radiat. Transf. 182, 35–44 (2016).
[Crossref]

JOSA B (1)

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” JOSA B 30(3), 656–662 (2013).
[Crossref]

Laser Photonics Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Nano Lett. (2)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

T. Hutter, S. R. Elliott, and S. Mahajan, “Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants,” Nanotechnology 24(3), 035201 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007).
[Crossref]

Opt. Express (12)

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

A. Chakrabarty, F. Wang, F. Minkowski, K. Sun, and Q. H. Wei, “Cavity modes and their excitations in elliptical plasmonic patch nanoantennas,” Opt. Express 20(11), 11615–11624 (2012).
[Crossref] [PubMed]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012).
[Crossref] [PubMed]

N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
[Crossref] [PubMed]

Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express 17(16), 13526–13531 (2009).
[Crossref] [PubMed]

J. J. Foley, C. Ungaro, K. Sun, M. C. Gupta, and S. K. Gray, “Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications,” Opt. Express 23(24), A1373–A1387 (2015).
[Crossref] [PubMed]

L. Meng, D. Zhao, Q. Li, and M. Qiu, “Polarization-sensitive perfect absorbers at near-infrared wavelengths,” Opt. Express 21(S1), A111–A122 (2013).
[Crossref] [PubMed]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
[Crossref]

R. Feng, J. Qiu, L. Liu, W. Ding, and L. Chen, “Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling,” Opt. Express 22(S7), A1713–A1724 (2014).
[Crossref] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref] [PubMed]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. B (1)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

F. Bigourdan, J. P. Hugonin, F. Marquier, C. Sauvan, and J. J. Greffet, “Nanoantenna for Electrical Generation of Surface Plasmon Polaritons,” Phys. Rev. Lett. 116(10), 106803 (2016).
[Crossref] [PubMed]

Science (1)

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the unit cell of the 1D periodic Ag/SiO2/Ag core/shell coaxial cylinders lying horizontally on a planar substrate.

Fig. 2
Fig. 2

Calculated spectral-normal absorptivity of the proposed structure (blue solid) compared with that of the structure without planar substrate (red dashed) and that of the composite cylinders replaced with solid silver cylinders (black dotted) in the wavenumber range from 2500 cm−1 to 20000 cm−1.

Fig. 3
Fig. 3

Cross-sectional view of the electromagnetic field distribution in the proposed structure corresponding to the spectral-normal absorptivity peaks at wavenumber (a) 3897.3 cm−1, (b) 7394.9 cm−1 and (c) 11342.1 cm−1. (d) LC circuit model for analysis of the resonance of cylinder MP1.

Fig. 4
Fig. 4

The absorptivity of (a) the proposed structure, (b) the WPS and (c) the SSC as a function of the wavenumber and the polar angle. (d) is similar to (c) except that the thickness of the planar SiO2 spacer is changed to 200 nm.

Fig. 5
Fig. 5

Effects of (a) the silver core radius R2 and (b) the SiO2 spacer shell de on the spectral-normal absorptivity of the proposed structure; (c) Effect of the semi-focal length e on the spectral-normal absorptivity of the confocal elliptical cylinder on planar substrate.

Fig. 6
Fig. 6

Calculated spectral-normal absorptivity of the 1D modified structure (blue solid) shown by the inset compared with that of the case without the planar substrate (red dashed) in the wavenumber range from 2500 cm−1 to 20000 cm−1.

Fig. 7
Fig. 7

Cross-sectional view of the electromagnetic field distribution in the modified five-layer structure without the planar substrate at wavenumber (a) 4350 cm−1, (b) 6250 cm−1, (c) 8450 cm−1 and (d) 11750 cm−1.

Fig. 8
Fig. 8

Effect of the semi-focal length e on the spectral-normal absorptivity of the confocal elliptical cylinder on planar substrate illustrated by the inset on the right.

Tables (3)

Tables Icon

Table 1 Values of the parameters used for the confocal elliptical composite cylinders

Tables Icon

Table 2 Comparison of the resonance wavenumber of cylinder MP1 calculated with Comsol and with the LC circuit model (v0)

Tables Icon

Table 3 Comparison of the resonance wavenumber of outer (vouter) and inner (vinner) cylinder MP1 calculated with Comsol and with the LC circuit model (v0)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z w1 =iω( 2 L m + L e1 + L e2 )+ 2 iω C m
k SPP = ω c ε SiO 2 ε Ag ( ω ) ε Ag ( ω )+ ε SiO 2
k SPP =ksinθ+m λ Λ
( n λ Λ ) 2 +2sinθn λ Λ cos 2 θ=0

Metrics