Abstract

We report a plasmonic structure for switchable reflection and transmission by polarization. The structure is composed of a hexagonal-packed polystyrene sphere array with silver patches on them. Simulations and experiments demonstrated that the conversions between reflected beams and transmitted ones can be performed when the polarization directions of incident beams vary from 0° to 90°. A switchable reflection and transmission at a given wavelength can be obtained, as long as sizes of PS spheres and azimuthal angles are properly chosen. Such a patchy plasmonic structure serving as a switch between reflection and transmission have potential applications in photoelectric control devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness

Yongkai Wang, Junchen Deng, Gang Wang, Tong Fu, Yu Qu, and Zhongyue Zhang
Opt. Express 24(3) 2307-2317 (2016)

Hole-size tuning and sensing performance of hexagonal plasmonic nanohole arrays

Takazumi Ohno, Carl Wadell, Satoshi Inagaki, Ji Shi, Yoshio Nakamura, Sachiko Matsushita, and Takumi Sannomiya
Opt. Mater. Express 6(5) 1594-1603 (2016)

Visible near-infrared light scattering of single silver split-ring structure made by nanosphere lithography

Toshihiro Okamoto, Tetsuya Fukuta, Shuji Sato, Masanobu Haraguchi, and Masuo Fukui
Opt. Express 19(8) 7068-7076 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices,” ACS Photonics 1(1), 69–78 (2014).
    [Crossref]
  2. G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
    [Crossref] [PubMed]
  3. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [Crossref] [PubMed]
  4. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  5. B. Sun, L. L. Wang, L. Wang, X. Zhai, X. F. Li, and J. Q. Liu, “Improved extraordinary optical transmission though single nano-slit by nano-defocusing,” Opt. Laser Technol. 54(1), 214–218 (2013).
    [Crossref]
  6. P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
    [Crossref]
  7. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
    [Crossref] [PubMed]
  8. P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  9. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  10. B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
    [Crossref] [PubMed]
  11. M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
    [Crossref]
  12. B. L. Claes and T. L. Nylander, “Gas detection by means of surface pasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [Crossref]
  13. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
    [Crossref] [PubMed]
  14. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [Crossref] [PubMed]
  15. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
    [Crossref] [PubMed]
  16. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
    [Crossref] [PubMed]
  17. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
    [Crossref] [PubMed]
  18. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  19. J. B. Pendry and J. Li, “An acoustic metafluid: realizing a broadband acoustic cloak,” New J. Phys. 10(11), 115032 (2008).
    [Crossref]
  20. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  21. W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides,” Nano Lett. 13(10), 4753–4758 (2013).
    [Crossref] [PubMed]
  22. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [Crossref] [PubMed]
  23. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18(22), 23009–23015 (2010).
    [Crossref] [PubMed]
  24. Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, “The un-symmetric hybridization of graphene surface plasmons incorporating graphene sheets and nano-ribbons,” Appl. Phys. Lett. 103(24), 241116 (2013).
    [Crossref]
  25. S. Biswas, J. Duan, D. Nepal, R. Pachter, and R. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13(5), 2220–2225 (2013).
    [Crossref] [PubMed]
  26. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
    [Crossref]
  27. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  28. J. Huang, M. Lee, A. Lucero, L. Cheng, and J. Kim, “Area-selective ALD of TiO2 nanolines with electron-beam lithography,” J. Phys. Chem. C 118(40), 23306–23312 (2014).
    [Crossref]
  29. A. Braun and S. A. Maier, “Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors,” ACS Sens. 1(9), 1155–1162 (2016).
    [Crossref]
  30. M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
    [Crossref] [PubMed]
  31. A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
    [Crossref] [PubMed]
  32. N. Y. J. Kowal, “Optically active fluorite films,” Nature 183(4654), 104–105 (1958).
  33. A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
    [Crossref] [PubMed]
  34. L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
    [Crossref] [PubMed]
  35. Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).
    [Crossref]
  36. Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
    [Crossref]
  37. Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
    [Crossref] [PubMed]
  38. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), p. 290.

2016 (4)

A. Braun and S. A. Maier, “Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors,” ACS Sens. 1(9), 1155–1162 (2016).
[Crossref]

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
[Crossref] [PubMed]

Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
[Crossref] [PubMed]

2015 (2)

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).
[Crossref]

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

2014 (3)

J. Huang, M. Lee, A. Lucero, L. Cheng, and J. Kim, “Area-selective ALD of TiO2 nanolines with electron-beam lithography,” J. Phys. Chem. C 118(40), 23306–23312 (2014).
[Crossref]

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

2013 (8)

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[Crossref] [PubMed]

B. Sun, L. L. Wang, L. Wang, X. Zhai, X. F. Li, and J. Q. Liu, “Improved extraordinary optical transmission though single nano-slit by nano-defocusing,” Opt. Laser Technol. 54(1), 214–218 (2013).
[Crossref]

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides,” Nano Lett. 13(10), 4753–4758 (2013).
[Crossref] [PubMed]

Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, “The un-symmetric hybridization of graphene surface plasmons incorporating graphene sheets and nano-ribbons,” Appl. Phys. Lett. 103(24), 241116 (2013).
[Crossref]

S. Biswas, J. Duan, D. Nepal, R. Pachter, and R. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13(5), 2220–2225 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

2011 (1)

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (4)

J. B. Pendry and J. Li, “An acoustic metafluid: realizing a broadband acoustic cloak,” New J. Phys. 10(11), 115032 (2008).
[Crossref]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

2007 (1)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

2006 (3)

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

2005 (1)

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2004 (1)

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[Crossref] [PubMed]

2001 (1)

1998 (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1995 (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

1993 (1)

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
[Crossref]

1988 (1)

1982 (1)

B. L. Claes and T. L. Nylander, “Gas detection by means of surface pasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

1958 (1)

N. Y. J. Kowal, “Optically active fluorite films,” Nature 183(4654), 104–105 (1958).

Alegret, S.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
[Crossref]

Alonsochamarro, J.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
[Crossref]

Alù, A.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Biswas, S.

S. Biswas, J. Duan, D. Nepal, R. Pachter, and R. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13(5), 2220–2225 (2013).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Bradley, L.

L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
[Crossref] [PubMed]

Braun, A.

A. Braun and S. A. Maier, “Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors,” ACS Sens. 1(9), 1155–1162 (2016).
[Crossref]

Brongersma, M. L.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides,” Nano Lett. 13(10), 4753–4758 (2013).
[Crossref] [PubMed]

Cai, W.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides,” Nano Lett. 13(10), 4753–4758 (2013).
[Crossref] [PubMed]

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Catrysse, P. B.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides,” Nano Lett. 13(10), 4753–4758 (2013).
[Crossref] [PubMed]

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Chen, X.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Cheng, J.

Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, “The un-symmetric hybridization of graphene surface plasmons incorporating graphene sheets and nano-ribbons,” Appl. Phys. Lett. 103(24), 241116 (2013).
[Crossref]

Cheng, L.

J. Huang, M. Lee, A. Lucero, L. Cheng, and J. Kim, “Area-selective ALD of TiO2 nanolines with electron-beam lithography,” J. Phys. Chem. C 118(40), 23306–23312 (2014).
[Crossref]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Claes, B. L.

B. L. Claes and T. L. Nylander, “Gas detection by means of surface pasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Consales, M.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Crescitelli, A.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Cummer, S. A.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cusano, A.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Dai, D.

Deng, J.

Dong, H.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Duan, J.

S. Biswas, J. Duan, D. Nepal, R. Pachter, and R. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13(5), 2220–2225 (2013).
[Crossref] [PubMed]

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Ebbesen, T. W.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[Crossref] [PubMed]

Esposito, E.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Fan, S.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides,” Nano Lett. 13(10), 4753–4758 (2013).
[Crossref] [PubMed]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Fowlkes, J. D.

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

Fox, J. M.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Friesen, S. A.

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

Fu, G.

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

Fu, T.

Gao, H.

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

Garces, I.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
[Crossref]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Gonidec, M.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Gosciniak, J.

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[Crossref] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Hall, A. S.

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

He, S.

He, Y.

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).
[Crossref]

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Holmgaard, T.

Huang, J.

J. Huang, M. Lee, A. Lucero, L. Cheng, and J. Kim, “Area-selective ALD of TiO2 nanolines with electron-beam lithography,” J. Phys. Chem. C 118(40), 23306–23312 (2014).
[Crossref]

Huang, L.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Huang, S.

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

Ingram, W.

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).
[Crossref]

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[Crossref] [PubMed]

Jean-Remy, P.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Jin, G.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kawata, S.

Kim, J.

J. Huang, M. Lee, A. Lucero, L. Cheng, and J. Kim, “Area-selective ALD of TiO2 nanolines with electron-beam lithography,” J. Phys. Chem. C 118(40), 23306–23312 (2014).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kowal, N. Y. J.

N. Y. J. Kowal, “Optically active fluorite films,” Nature 183(4654), 104–105 (1958).

Larsen, G. K.

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[Crossref] [PubMed]

Lawrence, K.

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).
[Crossref]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Lee, M.

J. Huang, M. Lee, A. Lucero, L. Cheng, and J. Kim, “Area-selective ALD of TiO2 nanolines with electron-beam lithography,” J. Phys. Chem. C 118(40), 23306–23312 (2014).
[Crossref]

Lewis, B. B.

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

Lezec, H. J.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Li, J.

J. B. Pendry and J. Li, “An acoustic metafluid: realizing a broadband acoustic cloak,” New J. Phys. 10(11), 115032 (2008).
[Crossref]

Li, S.

Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, “The un-symmetric hybridization of graphene surface plasmons incorporating graphene sheets and nano-ribbons,” Appl. Phys. Lett. 103(24), 241116 (2013).
[Crossref]

Li, X. F.

B. Sun, L. L. Wang, L. Wang, X. Zhai, X. F. Li, and J. Q. Liu, “Improved extraordinary optical transmission though single nano-slit by nano-defocusing,” Opt. Laser Technol. 54(1), 214–218 (2013).
[Crossref]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Linke, R. A.

Liu, G.

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

Liu, J.

Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, “The un-symmetric hybridization of graphene surface plasmons incorporating graphene sheets and nano-ribbons,” Appl. Phys. Lett. 103(24), 241116 (2013).
[Crossref]

Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, “The un-symmetric hybridization of graphene surface plasmons incorporating graphene sheets and nano-ribbons,” Appl. Phys. Lett. 103(24), 241116 (2013).
[Crossref]

Liu, J. Q.

B. Sun, L. L. Wang, L. Wang, X. Zhai, X. F. Li, and J. Q. Liu, “Improved extraordinary optical transmission though single nano-slit by nano-defocusing,” Opt. Laser Technol. 54(1), 214–218 (2013).
[Crossref]

Liu, M.

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

Liu, X.

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

Liu, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Livengood, R. H.

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

Lopez, R.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
[Crossref]

Lucero, A.

J. Huang, M. Lee, A. Lucero, L. Cheng, and J. Kim, “Area-selective ALD of TiO2 nanolines with electron-beam lithography,” J. Phys. Chem. C 118(40), 23306–23312 (2014).
[Crossref]

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

Magel, G. A.

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

Mahady, K.

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

Maier, S. A.

A. Braun and S. A. Maier, “Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors,” ACS Sens. 1(9), 1155–1162 (2016).
[Crossref]

Mallouk, T. E.

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

Manuel, M.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
[Crossref]

Martin, O. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Mateo, J.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
[Crossref]

Matsubara, K.

Minami, S.

Ming, N. B.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moore, T. M.

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Nemiroski, A.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Nepal, D.

S. Biswas, J. Duan, D. Nepal, R. Pachter, and R. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13(5), 2220–2225 (2013).
[Crossref] [PubMed]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

Nylander, T. L.

B. L. Claes and T. L. Nylander, “Gas detection by means of surface pasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Pachter, R.

S. Biswas, J. Duan, D. Nepal, R. Pachter, and R. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13(5), 2220–2225 (2013).
[Crossref] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Pellerin, K. M.

Pendry, J.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry and J. Li, “An acoustic metafluid: realizing a broadband acoustic cloak,” New J. Phys. 10(11), 115032 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Popa, B. I.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Qu, Y.

Quero, G.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Rack, P. D.

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

Ricciardi, A.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Schurig, D.

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shao, H.

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

Shin, W.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides,” Nano Lett. 13(10), 4753–4758 (2013).
[Crossref] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Stanford, M. G.

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, B.

B. Sun, L. L. Wang, L. Wang, X. Zhai, X. F. Li, and J. Q. Liu, “Improved extraordinary optical transmission though single nano-slit by nano-defocusing,” Opt. Laser Technol. 54(1), 214–218 (2013).
[Crossref]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Sun, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Sun, Y.

Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, “The un-symmetric hybridization of graphene surface plasmons incorporating graphene sheets and nano-ribbons,” Appl. Phys. Lett. 103(24), 241116 (2013).
[Crossref]

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Tan, Q.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Tan, S.

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

Thio, T.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Turnage, E.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Vaia, R.

S. Biswas, J. Duan, D. Nepal, R. Pachter, and R. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13(5), 2220–2225 (2013).
[Crossref] [PubMed]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Veronis, G.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides,” Nano Lett. 13(10), 4753–4758 (2013).
[Crossref] [PubMed]

Vidal, B.

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
[Crossref]

Wang, G.

Wang, H. T.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Wang, L.

B. Sun, L. L. Wang, L. Wang, X. Zhai, X. F. Li, and J. Q. Liu, “Improved extraordinary optical transmission though single nano-slit by nano-defocusing,” Opt. Laser Technol. 54(1), 214–218 (2013).
[Crossref]

Wang, L. L.

B. Sun, L. L. Wang, L. Wang, X. Zhai, X. F. Li, and J. Q. Liu, “Improved extraordinary optical transmission though single nano-slit by nano-defocusing,” Opt. Laser Technol. 54(1), 214–218 (2013).
[Crossref]

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Wang, Z. L.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Whitesides, G. M.

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

Wu, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Xiong, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Xu, H.

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X. C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Zentgraf, T.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhai, X.

B. Sun, L. L. Wang, L. Wang, X. Zhai, X. F. Li, and J. Q. Liu, “Improved extraordinary optical transmission though single nano-slit by nano-defocusing,” Opt. Laser Technol. 54(1), 214–218 (2013).
[Crossref]

Zhan, P.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Zhang, S.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Zhang, Z.

Zhao, Y.

L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
[Crossref] [PubMed]

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).
[Crossref]

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[Crossref] [PubMed]

Zheng, Z.

Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, “The un-symmetric hybridization of graphene surface plasmons incorporating graphene sheets and nano-ribbons,” Appl. Phys. Lett. 103(24), 241116 (2013).
[Crossref]

Zhu, S. N.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Zi, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. G. Stanford, K. Mahady, B. B. Lewis, J. D. Fowlkes, S. Tan, R. H. Livengood, G. A. Magel, T. M. Moore, and P. D. Rack, “Laser assisted focused He+ ion beam induced etching with and without XeF2 gas assist,” ACS Appl. Mater. Interfaces 8(42), 29155–29162 (2016).
[Crossref] [PubMed]

ACS Nano (2)

A. Nemiroski, M. Gonidec, J. M. Fox, P. Jean-Remy, E. Turnage, and G. M. Whitesides, “Engineering shadows to fabricate optical metasurfaces,” ACS Nano 8(11), 11061–11070 (2014).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

ACS Photonics (2)

Y. He, K. Lawrence, W. Ingram, and Y. Zhao, “Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device,” ACS Photonics 2(9), 1246–1252 (2015).
[Crossref]

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

ACS Sens. (1)

A. Braun and S. A. Maier, “Versatile direct laser writing lithography technique for surface enhanced infrared spectroscopy sensors,” ACS Sens. 1(9), 1155–1162 (2016).
[Crossref]

Adv. Mater. (1)

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Sun, Z. Zheng, J. Cheng, J. Liu, J. Liu, and S. Li, “The un-symmetric hybridization of graphene surface plasmons incorporating graphene sheets and nano-ribbons,” Appl. Phys. Lett. 103(24), 241116 (2013).
[Crossref]

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundström, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10(8), i–ix (1995).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

J. Huang, M. Lee, A. Lucero, L. Cheng, and J. Kim, “Area-selective ALD of TiO2 nanolines with electron-beam lithography,” J. Phys. Chem. C 118(40), 23306–23312 (2014).
[Crossref]

Langmuir (1)

L. Bradley and Y. Zhao, “Uniform plasmonic response of colloidal Ag patchy particles prepared by swinging oblique angle deposition,” Langmuir 32(19), 4969–4974 (2016).
[Crossref] [PubMed]

Light Sci. Appl. (1)

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Mater. Lett. (1)

Z. Liu, G. Liu, H. Shao, X. Liu, M. Liu, S. Huang, G. Fu, H. Xu, and H. Gao, “Refractometric sensing of silicon layer coupled plasmonic–colloidal crystals,” Mater. Lett. 140, 9–11 (2015).
[Crossref]

Nano Lett. (5)

G. K. Larsen, Y. He, W. Ingram, and Y. Zhao, “Hidden chirality in superficially racemic patchy silver films,” Nano Lett. 13(12), 6228–6232 (2013).
[Crossref] [PubMed]

A. S. Hall, S. A. Friesen, and T. E. Mallouk, “Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography,” Nano Lett. 13(6), 2623–2627 (2013).
[Crossref] [PubMed]

S. Biswas, J. Duan, D. Nepal, R. Pachter, and R. Vaia, “Plasmonic resonances in self-assembled reduced symmetry gold nanorod structures,” Nano Lett. 13(5), 2220–2225 (2013).
[Crossref] [PubMed]

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides,” Nano Lett. 13(10), 4753–4758 (2013).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Nature (2)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

N. Y. J. Kowal, “Optically active fluorite films,” Nature 183(4654), 104–105 (1958).

New J. Phys. (1)

J. B. Pendry and J. Li, “An acoustic metafluid: realizing a broadband acoustic cloak,” New J. Phys. 10(11), 115032 (2008).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

B. Sun, L. L. Wang, L. Wang, X. Zhai, X. F. Li, and J. Q. Liu, “Improved extraordinary optical transmission though single nano-slit by nano-defocusing,” Opt. Laser Technol. 54(1), 214–218 (2013).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036621 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92(11), 117403 (2004).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Science (4)

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Sens. Actuator B Chem. (1)

M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonsochamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuator B Chem. 11(1–3), 455–459 (1993).
[Crossref]

Sens. Actuators (1)

B. L. Claes and T. L. Nylander, “Gas detection by means of surface pasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), p. 290.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic for the deposition of the self-assembly PS spheres locating on a glass substrate with an incident angle of θ and an azimuthal angle of ɸ. (b) Five different shapes of silver patches formed on the PS spheres with θ = 87° and ɸ = 0°, 15°, 30°, 45°, and 60°, respectively.

Fig. 2
Fig. 2

(a) Model of a single patchy PS sphere with θ = 87° and ɸ = 0°. The diameter of the PS sphere is D = 500 nm, and the thickness of silver is set to H = 50 nm. (b) Reflection and (c) transmission as functions of wavelength for different polarization angles, respectively.

Fig. 3
Fig. 3

Electric field distributions in one of cross-sections of the structure at the resonance wavelength of 1310 nm for the polarization angles of (a) γ = 0° and (b) γ = 90°.

Fig. 4
Fig. 4

Simulated transmission as a function of wavelength for different diameters of PS spheres with different polarization angles. The diameters are (a) D = 300 nm, (b) D = 400 nm, (c) D = 600, and (d) D = 700 nm, respectively.

Fig. 5
Fig. 5

Resonance wavelengths as functions of diameters of PS spheres.

Fig. 6
Fig. 6

Resonance wavelengths as functions of azimuthal angles for D = 500 nm.

Fig. 7
Fig. 7

(a) SEM images of self-assembly polystyrene spheres with silver patches at four different domains. (b) Measured transmission curves of the sample for four different polarization angles. (c) Simulated transmission curves with ɸ = 1° for four different polarization angles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ=58.6+2.39D.
λ e ={ 1250 ϕ=30×2n 760 ϕ=30×(2n+1) .
λ=1.22× 10 3 109ϕ+6.65 ϕ 2 0.161 ϕ 3 +1.33× 10 3 ϕ 4 .

Metrics