Abstract

We investigate enhancement of electric multipole excitations of atoms in the vicinity of an object with a nanoscale edge resulted from a large electromagnetic field gradient. We calculate the excitation efficiencies of a Rb atom around a nanoedge and find the excitations are enhanced by several orders of magnitude. The efficiencies with the change in the magnetic quantum number resolved are also examined. Each resolved efficiency shows rotationally symmetric spatial distribution, with continuous modification in shape from the far field to the near field. Furthermore, we estimate photon emission rates accompanied with multipole excitations in alkali (Rb and Cs) atoms and discuss the possibility to observe the enhancement in the multi-pole excitation in cold atoms.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detecting photons in the dark region of Laguerre-Gauss beams

Vasily Klimov, Daniel Bloch, Martial Ducloy, and Jose R. Rios Leite
Opt. Express 17(12) 9718-9723 (2009)

Mechanical effects of light in optical resonators

Peter Domokos and Helmut Ritsch
J. Opt. Soc. Am. B 20(5) 1098-1130 (2003)

Artificial gauge magnetic and electric fields for free two-level atoms interacting with optical Ferris wheel light fields

V. E. Lembessis, A. Alqarni, S. Alshamari, A. Siddig, and O. M. Aldossary
J. Opt. Soc. Am. B 34(6) 1122-1129 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer/Plenum, 1999).
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
  3. M. L. Juan, M. Righini, and R. Quidant, “’Plasmon nano-optical tweezers,” Nature Photon. 5, 349–356 (2011).
  4. M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).
  5. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988).
  6. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
  7. V. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Mapping of focused Laguerre-Gauss beams: The interplay between spin and orbital angular momentum and its dependence on detector characteristics,” Phys. Rev. A 85, 053834 (2012).
  8. K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, “Simulation of electric quadrupole and magnetic dipole transition efficiencies in optical near fields generated by a subwavelength slit array,” J. Phys. Soc. Jpn. 78, 024301 (2009).
  9. A. M. Kern and O. J. F. Martin, “Strong enhancement of forbidden atomic transitions using plasmonic nanostructures,” Phys. Rev. A 85, 022501 (2012).
  10. P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).
  11. N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115, 5304–5311 (2011).
  12. S. Tojo, M. Hasuo, and T. Fujimoto, “Absorption enhancement of an electric quadrupole transition of cesium atoms in an evanescent field,” Phys. Rev. Lett. 92, 053001 (2004).
  13. S. Tojo and M. Hasuo, “Oscillator-strength enhancement of electric-dipole-forbidden transitions in evanescent light at total reflection,” Phys. Rev. A 71, 012508 (2005).
  14. M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, “Observation of an electric octupole transition in a single ion,” Phys. Rev. Lett. 78, 1876–1879 (1997).
  15. K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the 2S1/2−2F7/2 electric octupole transition in a single 171Yb+ ion,” Phys. Rev. A 79, 033403 (2009).
  16. S. Huotari, E. Suljoti, C. J. Sahle, S. Radel, G. Monaco, and F. M. F. de Groot, “High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles,” New J. Phys. 17, 043041 (2015).
  17. N. A. Jelley, Fundamentals of Nuclear Physics (Cambridge University, 1990).
  18. S. Bernadotte, A. J. Atkins, and C. R. Jacob, “Origin-independent calculation of quadrupole intensities in X-ray spectroscopy,” J. Chem. Phys. 137, 204106 (2012).
  19. T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).
  20. W. Heitler, The quantum theory of radiation (Clarendon, 1954).
  21. E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys. 4, 87–132 (1932).
  22. J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).
  23. C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photon. 5, 494–498 (2011).
  24. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Detecting photons in the dark region of Laguerre-Gauss beams,” Opt. Express 17, 9718–9723 (2009).
  25. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
  26. A. Taflove and S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method (Artech, 2000).
  27. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687 (2010).
  28. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
  29. J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (Rb I through Rb XXXVII),” J. Phys. Chem. Ref. Data 35, 301–421 (2006).
  30. I. Johansson, “Spectra of the alkali metals in the lead sulfide region,” Ark. Fys. 20, 135 (1961).
  31. U. Litzén, “The 5 g Levels of the alkali metals,” Phys. Scr. 1, 253 (1970).
  32. H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,” Phys. Rev. 128, 1622 (1962).
  33. H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).
  34. E. Clementi, D. L. Raimondi, and W. P. Reinhardt, “Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons,” J. Chem. Phys. 471300–1307 (1967).
  35. T. Inoue and H. Hori, “Theoretical treatment of electric and magnetic multipole radiation near a planar dielectric surface based on angular spectrum representation of vector field,” Opt. Rev. 5, 295–302 (1998).
  36. M. Born and E. Wolf, Principles of optics, 7th ed. (Cambridge University, 1999).
  37. K. Niemax, “Oscillator strength of Rb quadrupole lines,” J. Quant. Spectrosc. Radiat. Transfer,  17, 747–750 (1977).
  38. B. Warner, “Atomic oscillator strength–III,” Mon. Not. R. Astr. Soc. 139, 115–128 (1968).
  39. S. Tojo, T. Fujimoto, and M. Hasuo, “Precision measurement of the oscillator strength of the cesium 6 2S1/2 → 5 2D5/2 electric quadrupole transition in propagating and evanescent wave fields,” Phys. Rev. A,  71, 012507 (2005).
  40. K. Niemax, “Broadening and oscillator strength of Cs quadrupole lines,” J. Quant. Spectrosc. Radiat. Transfer,  17, 125–129 (1977).
  41. K.-H. Weber and C. J. Sansonetti, “Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium,” Phys. Rev. A 35, 4650–4660 (1987).
  42. K. B. Eriksson, I. Johansson, and G. Norlén, “Precision wavelength measurements connecting the Cs I 6s, 6p, and 6d levels, with a study of the correction for phase change in infrared interferometry,” Ark. Fys. 28, 233 (1964).
  43. W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).
  44. D. E. Chang, K. Shinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).

2016 (1)

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

2015 (2)

S. Huotari, E. Suljoti, C. J. Sahle, S. Radel, G. Monaco, and F. M. F. de Groot, “High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles,” New J. Phys. 17, 043041 (2015).

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).

2014 (2)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

D. E. Chang, K. Shinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).

2012 (5)

V. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Mapping of focused Laguerre-Gauss beams: The interplay between spin and orbital angular momentum and its dependence on detector characteristics,” Phys. Rev. A 85, 053834 (2012).

A. M. Kern and O. J. F. Martin, “Strong enhancement of forbidden atomic transitions using plasmonic nanostructures,” Phys. Rev. A 85, 022501 (2012).

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).

S. Bernadotte, A. J. Atkins, and C. R. Jacob, “Origin-independent calculation of quadrupole intensities in X-ray spectroscopy,” J. Chem. Phys. 137, 204106 (2012).

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

2011 (3)

N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115, 5304–5311 (2011).

M. L. Juan, M. Righini, and R. Quidant, “’Plasmon nano-optical tweezers,” Nature Photon. 5, 349–356 (2011).

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photon. 5, 494–498 (2011).

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687 (2010).

2009 (3)

V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Detecting photons in the dark region of Laguerre-Gauss beams,” Opt. Express 17, 9718–9723 (2009).

K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, “Simulation of electric quadrupole and magnetic dipole transition efficiencies in optical near fields generated by a subwavelength slit array,” J. Phys. Soc. Jpn. 78, 024301 (2009).

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the 2S1/2−2F7/2 electric octupole transition in a single 171Yb+ ion,” Phys. Rev. A 79, 033403 (2009).

2007 (2)

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).

2006 (1)

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (Rb I through Rb XXXVII),” J. Phys. Chem. Ref. Data 35, 301–421 (2006).

2005 (2)

S. Tojo, T. Fujimoto, and M. Hasuo, “Precision measurement of the oscillator strength of the cesium 6 2S1/2 → 5 2D5/2 electric quadrupole transition in propagating and evanescent wave fields,” Phys. Rev. A,  71, 012507 (2005).

S. Tojo and M. Hasuo, “Oscillator-strength enhancement of electric-dipole-forbidden transitions in evanescent light at total reflection,” Phys. Rev. A 71, 012508 (2005).

2004 (1)

S. Tojo, M. Hasuo, and T. Fujimoto, “Absorption enhancement of an electric quadrupole transition of cesium atoms in an evanescent field,” Phys. Rev. Lett. 92, 053001 (2004).

1998 (2)

T. Inoue and H. Hori, “Theoretical treatment of electric and magnetic multipole radiation near a planar dielectric surface based on angular spectrum representation of vector field,” Opt. Rev. 5, 295–302 (1998).

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).

M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, “Observation of an electric octupole transition in a single ion,” Phys. Rev. Lett. 78, 1876–1879 (1997).

1987 (1)

K.-H. Weber and C. J. Sansonetti, “Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium,” Phys. Rev. A 35, 4650–4660 (1987).

1977 (3)

K. Niemax, “Broadening and oscillator strength of Cs quadrupole lines,” J. Quant. Spectrosc. Radiat. Transfer,  17, 125–129 (1977).

K. Niemax, “Oscillator strength of Rb quadrupole lines,” J. Quant. Spectrosc. Radiat. Transfer,  17, 747–750 (1977).

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).

1970 (1)

U. Litzén, “The 5 g Levels of the alkali metals,” Phys. Scr. 1, 253 (1970).

1968 (1)

B. Warner, “Atomic oscillator strength–III,” Mon. Not. R. Astr. Soc. 139, 115–128 (1968).

1967 (1)

E. Clementi, D. L. Raimondi, and W. P. Reinhardt, “Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons,” J. Chem. Phys. 471300–1307 (1967).

1964 (1)

K. B. Eriksson, I. Johansson, and G. Norlén, “Precision wavelength measurements connecting the Cs I 6s, 6p, and 6d levels, with a study of the correction for phase change in infrared interferometry,” Ark. Fys. 28, 233 (1964).

1962 (1)

H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,” Phys. Rev. 128, 1622 (1962).

1961 (1)

I. Johansson, “Spectra of the alkali metals in the lead sulfide region,” Ark. Fys. 20, 135 (1961).

1932 (1)

E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys. 4, 87–132 (1932).

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

Atkins, A. J.

S. Bernadotte, A. J. Atkins, and C. R. Jacob, “Origin-independent calculation of quadrupole intensities in X-ray spectroscopy,” J. Chem. Phys. 137, 204106 (2012).

Barwood, G. P.

M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, “Observation of an electric octupole transition in a single ion,” Phys. Rev. Lett. 78, 1876–1879 (1997).

Bender, H.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photon. 5, 494–498 (2011).

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687 (2010).

Bernadotte, S.

S. Bernadotte, A. J. Atkins, and C. R. Jacob, “Origin-independent calculation of quadrupole intensities in X-ray spectroscopy,” J. Chem. Phys. 137, 204106 (2012).

Bharadwaj, P.

Bloch, D.

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

V. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Mapping of focused Laguerre-Gauss beams: The interplay between spin and orbital angular momentum and its dependence on detector characteristics,” Phys. Rev. A 85, 053834 (2012).

V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Detecting photons in the dark region of Laguerre-Gauss beams,” Opt. Express 17, 9718–9723 (2009).

Boreman, G. D.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).

Born, M.

M. Born and E. Wolf, Principles of optics, 7th ed. (Cambridge University, 1999).

Chang, D. E.

D. E. Chang, K. Shinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

Cirac, J. I.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

Ciracì, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

Clementi, E.

E. Clementi, D. L. Raimondi, and W. P. Reinhardt, “Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons,” J. Chem. Phys. 471300–1307 (1967).

Cohen, A. E.

N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115, 5304–5311 (2011).

D’Archangel, J.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).

de Groot, F. M. F.

S. Huotari, E. Suljoti, C. J. Sahle, S. Radel, G. Monaco, and F. M. F. de Groot, “High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles,” New J. Phys. 17, 043041 (2015).

Deguchi, K.

K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, “Simulation of electric quadrupole and magnetic dipole transition efficiencies in optical near fields generated by a subwavelength slit array,” J. Phys. Soc. Jpn. 78, 024301 (2009).

Djurišic, A. B.

Ducloy, M.

V. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Mapping of focused Laguerre-Gauss beams: The interplay between spin and orbital angular momentum and its dependence on detector characteristics,” Phys. Rev. A 85, 053834 (2012).

V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Detecting photons in the dark region of Laguerre-Gauss beams,” Opt. Express 17, 9718–9723 (2009).

Ehrenreich, H.

H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,” Phys. Rev. 128, 1622 (1962).

Elazar, J. M.

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).

Eriksson, K. B.

K. B. Eriksson, I. Johansson, and G. Norlén, “Precision wavelength measurements connecting the Cs I 6s, 6p, and 6d levels, with a study of the correction for phase change in infrared interferometry,” Ark. Fys. 28, 233 (1964).

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

Feist, J.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

Fermi, E.

E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys. 4, 87–132 (1932).

Fleischer, M.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photon. 5, 494–498 (2011).

Fortágh, J.

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).

Fujimoto, T.

S. Tojo, T. Fujimoto, and M. Hasuo, “Precision measurement of the oscillator strength of the cesium 6 2S1/2 → 5 2D5/2 electric quadrupole transition in propagating and evanescent wave fields,” Phys. Rev. A,  71, 012507 (2005).

S. Tojo, M. Hasuo, and T. Fujimoto, “Absorption enhancement of an electric quadrupole transition of cesium atoms in an evanescent field,” Phys. Rev. Lett. 92, 053001 (2004).

Gill, P.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the 2S1/2−2F7/2 electric octupole transition in a single 171Yb+ ion,” Phys. Rev. A 79, 033403 (2009).

M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, “Observation of an electric octupole transition in a single ion,” Phys. Rev. Lett. 78, 1876–1879 (1997).

Grahn, P.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).

Gullans, M.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method (Artech, 2000).

Hasuo, M.

K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, “Simulation of electric quadrupole and magnetic dipole transition efficiencies in optical near fields generated by a subwavelength slit array,” J. Phys. Soc. Jpn. 78, 024301 (2009).

S. Tojo and M. Hasuo, “Oscillator-strength enhancement of electric-dipole-forbidden transitions in evanescent light at total reflection,” Phys. Rev. A 71, 012508 (2005).

S. Tojo, T. Fujimoto, and M. Hasuo, “Precision measurement of the oscillator strength of the cesium 6 2S1/2 → 5 2D5/2 electric quadrupole transition in propagating and evanescent wave fields,” Phys. Rev. A,  71, 012507 (2005).

S. Tojo, M. Hasuo, and T. Fujimoto, “Absorption enhancement of an electric quadrupole transition of cesium atoms in an evanescent field,” Phys. Rev. Lett. 92, 053001 (2004).

Heitler, W.

W. Heitler, The quantum theory of radiation (Clarendon, 1954).

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

Hori, H.

T. Inoue and H. Hori, “Theoretical treatment of electric and magnetic multipole radiation near a planar dielectric surface based on angular spectrum representation of vector field,” Opt. Rev. 5, 295–302 (1998).

M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer/Plenum, 1999).

Hosaka, K.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the 2S1/2−2F7/2 electric octupole transition in a single 171Yb+ ion,” Phys. Rev. A 79, 033403 (2009).

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

Huotari, S.

S. Huotari, E. Suljoti, C. J. Sahle, S. Radel, G. Monaco, and F. M. F. de Groot, “High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles,” New J. Phys. 17, 043041 (2015).

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687 (2010).

Inoue, T.

T. Inoue and H. Hori, “Theoretical treatment of electric and magnetic multipole radiation near a planar dielectric surface based on angular spectrum representation of vector field,” Opt. Rev. 5, 295–302 (1998).

Iwamae, A.

K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, “Simulation of electric quadrupole and magnetic dipole transition efficiencies in optical near fields generated by a subwavelength slit array,” J. Phys. Soc. Jpn. 78, 024301 (2009).

Jacob, C. R.

S. Bernadotte, A. J. Atkins, and C. R. Jacob, “Origin-independent calculation of quadrupole intensities in X-ray spectroscopy,” J. Chem. Phys. 137, 204106 (2012).

Jelley, N. A.

N. A. Jelley, Fundamentals of Nuclear Physics (Cambridge University, 1990).

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687 (2010).

Johansson, I.

K. B. Eriksson, I. Johansson, and G. Norlén, “Precision wavelength measurements connecting the Cs I 6s, 6p, and 6d levels, with a study of the correction for phase change in infrared interferometry,” Ark. Fys. 28, 233 (1964).

I. Johansson, “Spectra of the alkali metals in the lead sulfide region,” Ark. Fys. 20, 135 (1961).

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687 (2010).

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “’Plasmon nano-optical tweezers,” Nature Photon. 5, 349–356 (2011).

Kaivola, M.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).

Kern, A. M.

A. M. Kern and O. J. F. Martin, “Strong enhancement of forbidden atomic transitions using plasmonic nanostructures,” Phys. Rev. A 85, 022501 (2012).

Kern, D.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photon. 5, 494–498 (2011).

Kimble, H. J.

D. E. Chang, K. Shinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).

Klein, H. A.

M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, “Observation of an electric octupole transition in a single ion,” Phys. Rev. Lett. 78, 1876–1879 (1997).

Klimov, V.

Klimov, V. V.

V. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Mapping of focused Laguerre-Gauss beams: The interplay between spin and orbital angular momentum and its dependence on detector characteristics,” Phys. Rev. A 85, 053834 (2012).

Kunz, R. E.

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).

Litzén, U.

U. Litzén, “The 5 g Levels of the alkali metals,” Phys. Scr. 1, 253 (1970).

Lukin, M. D.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

Lukosz, W.

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).

Majewski, M. L.

Margolis, H. S.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the 2S1/2−2F7/2 electric octupole transition in a single 171Yb+ ion,” Phys. Rev. A 79, 033403 (2009).

Martin, O. J. F.

A. M. Kern and O. J. F. Martin, “Strong enhancement of forbidden atomic transitions using plasmonic nanostructures,” Phys. Rev. A 85, 022501 (2012).

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

Monaco, G.

S. Huotari, E. Suljoti, C. J. Sahle, S. Radel, G. Monaco, and F. M. F. de Groot, “High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles,” New J. Phys. 17, 043041 (2015).

Nakamura, H.

K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, “Simulation of electric quadrupole and magnetic dipole transition efficiencies in optical near fields generated by a subwavelength slit array,” J. Phys. Soc. Jpn. 78, 024301 (2009).

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).

Niemax, K.

K. Niemax, “Broadening and oscillator strength of Cs quadrupole lines,” J. Quant. Spectrosc. Radiat. Transfer,  17, 125–129 (1977).

K. Niemax, “Oscillator strength of Rb quadrupole lines,” J. Quant. Spectrosc. Radiat. Transfer,  17, 747–750 (1977).

Nobusada, K.

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

Norlén, G.

K. B. Eriksson, I. Johansson, and G. Norlén, “Precision wavelength measurements connecting the Cs I 6s, 6p, and 6d levels, with a study of the correction for phase change in infrared interferometry,” Ark. Fys. 28, 233 (1964).

Novotny, L.

Ohtsu, M.

M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer/Plenum, 1999).

Okuda, M.

K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, “Simulation of electric quadrupole and magnetic dipole transition efficiencies in optical near fields generated by a subwavelength slit array,” J. Phys. Soc. Jpn. 78, 024301 (2009).

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687 (2010).

Philipp, H. R.

H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,” Phys. Rev. 128, 1622 (1962).

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “’Plasmon nano-optical tweezers,” Nature Photon. 5, 349–356 (2011).

Radel, S.

S. Huotari, E. Suljoti, C. J. Sahle, S. Radel, G. Monaco, and F. M. F. de Groot, “High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles,” New J. Phys. 17, 043041 (2015).

Raether, H.

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988).

Raimondi, D. L.

E. Clementi, D. L. Raimondi, and W. P. Reinhardt, “Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons,” J. Chem. Phys. 471300–1307 (1967).

Rakic, A. D.

Raschke, M. B.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).

Reinhardt, W. P.

E. Clementi, D. L. Raimondi, and W. P. Reinhardt, “Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons,” J. Chem. Phys. 471300–1307 (1967).

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “’Plasmon nano-optical tweezers,” Nature Photon. 5, 349–356 (2011).

Rios Leite, J. R.

V. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Mapping of focused Laguerre-Gauss beams: The interplay between spin and orbital angular momentum and its dependence on detector characteristics,” Phys. Rev. A 85, 053834 (2012).

V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Detecting photons in the dark region of Laguerre-Gauss beams,” Opt. Express 17, 9718–9723 (2009).

Roberts, M.

M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, “Observation of an electric octupole transition in a single ion,” Phys. Rev. Lett. 78, 1876–1879 (1997).

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687 (2010).

Rowley, W. R. C.

M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, “Observation of an electric octupole transition in a single ion,” Phys. Rev. Lett. 78, 1876–1879 (1997).

Sahle, C. J.

S. Huotari, E. Suljoti, C. J. Sahle, S. Radel, G. Monaco, and F. M. F. de Groot, “High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles,” New J. Phys. 17, 043041 (2015).

Sansonetti, C. J.

K.-H. Weber and C. J. Sansonetti, “Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium,” Phys. Rev. A 35, 4650–4660 (1987).

Sansonetti, J. E.

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (Rb I through Rb XXXVII),” J. Phys. Chem. Ref. Data 35, 301–421 (2006).

Sawada, K.

K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, “Simulation of electric quadrupole and magnetic dipole transition efficiencies in optical near fields generated by a subwavelength slit array,” J. Phys. Soc. Jpn. 78, 024301 (2009).

Shevchenko, A.

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).

Shinha, K.

D. E. Chang, K. Shinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).

Slama, S.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photon. 5, 494–498 (2011).

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

Soppera, O.

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

Stannard, A.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the 2S1/2−2F7/2 electric octupole transition in a single 171Yb+ ion,” Phys. Rev. A 79, 033403 (2009).

Stehle, C.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photon. 5, 494–498 (2011).

Stehlin, F.

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

Suljoti, E.

S. Huotari, E. Suljoti, C. J. Sahle, S. Radel, G. Monaco, and F. M. F. de Groot, “High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles,” New J. Phys. 17, 043041 (2015).

Sundheimer, M. L.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method (Artech, 2000).

Taylor, J. M.

D. E. Chang, K. Shinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).

Taylor, P.

M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, “Observation of an electric octupole transition in a single ion,” Phys. Rev. Lett. 78, 1876–1879 (1997).

Thompson, J. D.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

Tiecke, T. G.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

Tojo, S.

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

S. Tojo and M. Hasuo, “Oscillator-strength enhancement of electric-dipole-forbidden transitions in evanescent light at total reflection,” Phys. Rev. A 71, 012508 (2005).

S. Tojo, T. Fujimoto, and M. Hasuo, “Precision measurement of the oscillator strength of the cesium 6 2S1/2 → 5 2D5/2 electric quadrupole transition in propagating and evanescent wave fields,” Phys. Rev. A,  71, 012507 (2005).

S. Tojo, M. Hasuo, and T. Fujimoto, “Absorption enhancement of an electric quadrupole transition of cesium atoms in an evanescent field,” Phys. Rev. Lett. 92, 053001 (2004).

Tsuboi, T.

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

Tucker, E.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).

Walton, B. R.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the 2S1/2−2F7/2 electric octupole transition in a single 171Yb+ ion,” Phys. Rev. A 79, 033403 (2009).

Warner, B.

B. Warner, “Atomic oscillator strength–III,” Mon. Not. R. Astr. Soc. 139, 115–128 (1968).

Weber, K.-H.

K.-H. Weber and C. J. Sansonetti, “Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium,” Phys. Rev. A 35, 4650–4660 (1987).

Webster, S. A.

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the 2S1/2−2F7/2 electric octupole transition in a single 171Yb+ ion,” Phys. Rev. A 79, 033403 (2009).

Wolf, E.

M. Born and E. Wolf, Principles of optics, 7th ed. (Cambridge University, 1999).

Yamaguchi, M.

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

Yang, H. U.

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).

Yang, N.

N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115, 5304–5311 (2011).

Yatsui, T.

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

Zimmermann, C.

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photon. 5, 494–498 (2011).

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).

Zoller, P.

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

Appl. Opt. (1)

Ark. Fys. (2)

I. Johansson, “Spectra of the alkali metals in the lead sulfide region,” Ark. Fys. 20, 135 (1961).

K. B. Eriksson, I. Johansson, and G. Norlén, “Precision wavelength measurements connecting the Cs I 6s, 6p, and 6d levels, with a study of the correction for phase change in infrared interferometry,” Ark. Fys. 28, 233 (1964).

Comp. Phys. Comm. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Comm. 181, 687 (2010).

J. Chem. Phys. (2)

E. Clementi, D. L. Raimondi, and W. P. Reinhardt, “Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons,” J. Chem. Phys. 471300–1307 (1967).

S. Bernadotte, A. J. Atkins, and C. R. Jacob, “Origin-independent calculation of quadrupole intensities in X-ray spectroscopy,” J. Chem. Phys. 137, 204106 (2012).

J. Phys. Chem. B (1)

N. Yang and A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115, 5304–5311 (2011).

J. Phys. Chem. Ref. Data (1)

J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (Rb I through Rb XXXVII),” J. Phys. Chem. Ref. Data 35, 301–421 (2006).

J. Phys. Soc. Jpn. (1)

K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, “Simulation of electric quadrupole and magnetic dipole transition efficiencies in optical near fields generated by a subwavelength slit array,” J. Phys. Soc. Jpn. 78, 024301 (2009).

J. Quant. Spectrosc. Radiat. Transfer (2)

K. Niemax, “Oscillator strength of Rb quadrupole lines,” J. Quant. Spectrosc. Radiat. Transfer,  17, 747–750 (1977).

K. Niemax, “Broadening and oscillator strength of Cs quadrupole lines,” J. Quant. Spectrosc. Radiat. Transfer,  17, 125–129 (1977).

Light: Science & Applications (1)

T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, and D. Bloch, “Optically controlled magnetic-field etching on the nano-scale,” Light: Science & Applications 5, e16054 (2016).

Mon. Not. R. Astr. Soc. (1)

B. Warner, “Atomic oscillator strength–III,” Mon. Not. R. Astr. Soc. 139, 115–128 (1968).

Nat. Commun. (1)

D. E. Chang, K. Shinha, J. M. Taylor, and H. J. Kimble, “Trapping atoms using nanoscale quantum vacuum forces,” Nat. Commun. 5, 4343 (2014).

Nat. Photon. (2)

C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, and S. Slama, “Plasmonically tailored micropotentials for ultracold atoms,” Nat. Photon. 5, 494–498 (2011).

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).

Nature Photon. (1)

M. L. Juan, M. Righini, and R. Quidant, “’Plasmon nano-optical tweezers,” Nature Photon. 5, 349–356 (2011).

New J. Phys. (2)

P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys. 14, 093033 (2012).

S. Huotari, E. Suljoti, C. J. Sahle, S. Radel, G. Monaco, and F. M. F. de Groot, “High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles,” New J. Phys. 17, 043041 (2015).

Opt. Commun. (1)

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun. 20, 195–199 (1977).

Opt. Express (2)

Opt. Rev. (1)

T. Inoue and H. Hori, “Theoretical treatment of electric and magnetic multipole radiation near a planar dielectric surface based on angular spectrum representation of vector field,” Opt. Rev. 5, 295–302 (1998).

Phys. Rev. (1)

H. Ehrenreich and H. R. Philipp, “Optical Properties of Ag and Cu,” Phys. Rev. 128, 1622 (1962).

Phys. Rev. A (6)

K. Hosaka, S. A. Webster, A. Stannard, B. R. Walton, H. S. Margolis, and P. Gill, “Frequency measurement of the 2S1/2−2F7/2 electric octupole transition in a single 171Yb+ ion,” Phys. Rev. A 79, 033403 (2009).

S. Tojo and M. Hasuo, “Oscillator-strength enhancement of electric-dipole-forbidden transitions in evanescent light at total reflection,” Phys. Rev. A 71, 012508 (2005).

V. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, “Mapping of focused Laguerre-Gauss beams: The interplay between spin and orbital angular momentum and its dependence on detector characteristics,” Phys. Rev. A 85, 053834 (2012).

A. M. Kern and O. J. F. Martin, “Strong enhancement of forbidden atomic transitions using plasmonic nanostructures,” Phys. Rev. A 85, 022501 (2012).

S. Tojo, T. Fujimoto, and M. Hasuo, “Precision measurement of the oscillator strength of the cesium 6 2S1/2 → 5 2D5/2 electric quadrupole transition in propagating and evanescent wave fields,” Phys. Rev. A,  71, 012507 (2005).

K.-H. Weber and C. J. Sansonetti, “Accurate energies of nS, nP, nD, nF, and nG levels of neutral cesium,” Phys. Rev. A 35, 4650–4660 (1987).

Phys. Rev. B (1)

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91, 235137 (2015).

Phys. Rev. Lett. (3)

M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, “Nanoplasmonic lattices for ultracold atoms,” Phys. Rev. Lett. 109, 235309 (2012).

M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, and W. R. C. Rowley, “Observation of an electric octupole transition in a single ion,” Phys. Rev. Lett. 78, 1876–1879 (1997).

S. Tojo, M. Hasuo, and T. Fujimoto, “Absorption enhancement of an electric quadrupole transition of cesium atoms in an evanescent field,” Phys. Rev. Lett. 92, 053001 (2004).

Phys. Scr. (1)

U. Litzén, “The 5 g Levels of the alkali metals,” Phys. Scr. 1, 253 (1970).

Rev. Mod. Phys. (2)

E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys. 4, 87–132 (1932).

J. Fortágh and C. Zimmermann, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007).

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).

Other (6)

M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer/Plenum, 1999).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer, 1988).

N. A. Jelley, Fundamentals of Nuclear Physics (Cambridge University, 1990).

W. Heitler, The quantum theory of radiation (Clarendon, 1954).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method (Artech, 2000).

M. Born and E. Wolf, Principles of optics, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of the simulated situation. A silver object with an edge of a curvature radius R is illuminated by an incident light of wavelength λ = 389 nm.

Fig. 2
Fig. 2

Two-dimensional plots of the excitation efficiencies of (a)–(c) E1, (d)–(f) E2, and (g)–(i) E3 transitions in the vicinities of nanostructures with curvatures of (a), (d), (g) R = 2 nm, (b), (e), (h) 10 nm, and (c), (f), (i) 50 nm.

Fig. 3
Fig. 3

The dependence of the excitation efficiencies on the distance from the surface d for the edge with the curvature radius R of (a) 2 nm and (b) 10 nm. The excitation efficiencies of E1 (black, dotted line), E2 (red, solid line), E3 (blue, dashed line), and E4 (green, dotted-dashed line) are shown.

Fig. 4
Fig. 4

The dependence of excitation efficiencies on R and d of (a) E1, (b) E2, (c) E3 and (d) E4 transitions. The excitation efficiencies of E1 (black, dotted line), E2 (red, solid line), E3 (blue, dashed line), and E4 (green, dotted-dashed line) for d = 2 nm and d = 10 nm are shown in (e) and (f), respectively.

Fig. 5
Fig. 5

Two-dimensional plots of the excitation efficiencies of E1, E2, E3, and E4 transitions with Δm resolved. The color scales of excitation efficiencies are the same in each El transition but vary among transitions with different l. The color bar for each El transition is shown at the right side of each row.

Fig. 6
Fig. 6

Angular dependence of the excitation efficiencies of (a) E1, (b) E2, (c) E3, and (d) E4 transitions at d = 2 nm with Δm resolved.

Fig. 7
Fig. 7

The intervals between the peaks in the excitation efficiency. (a)–(d) shows d and α-dependence in the excitation efficiency of the excitation efficiencies of E1, E2, E3 and E4 transitions with Δm = 0, respectively. The color scales vary among figures. (e) plots the angular intervals between nearest peaks at d = 2 nm (filled red circles), d =5 nm (open green rectangles), and d = 10 nm (filled blue triangles) as a function of the rank of the transition l. The dot-dashed (blue) line and the dashed (brown) line correspond to 360°/(2l) and 270°/(2l), respectively.

Tables (1)

Tables Icon

Table 1 The properties of several E2 lines in Rb and Cs.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

= d E ( r 0 ) m B ( r 0 ) + e Q i j i E k ( r 0 ) + , = E 1 + M1 + E 2 +
E 3 = e O i j k i j E k ( r 0 )
E 4 = e H i j k l i j k E l ( r 0 )
H i j k l = r i r j r k r l r 2 7 ( r i r j δ k l + r i r k δ j l + r i r l δ j k + r j r k δ i l + r j r l δ i k + r k r l δ i j ) + 3 35 r 4 δ i j k l
E 2 = e [ Q ( + 2 ) + Q ( 2 ) 6 Q ( 0 ) 2 x E x + ( Q ( + 1 ) Q ( 1 ) ) x E x ]
Q 11 Q 22 = Q 2 ( + 2 ) + Q 2 ( 2 ) ,
Q 11 + Q 22 2 Q 33 = 6 Q 2 ( 0 ) ,
Q 13 + Q 31 = Q 2 ( 1 ) Q 2 ( + 1 ) .
R E 2 = C E 2 [ | x E x | 2 + | z E x | 2 ] ,
R E 3 = C E 3 [ 1 175 | x z E x x x E x + 2 z z E z | 2 + 1 1050 | 3 x E x 4 z z E x 4 x z E z 4 z x E z | 2 + 1 105 | x z E x + z x E x + x x E z | 2 + 1 70 | x x E x | 2 ] .
f ( r ) = L M R L ( r ) Y L M ( θ , ϕ ) ,
O ( 0 ) = [ [ O x ( 0 ) , O y ( 0 ) , O z ( 0 ) ] ] = 1 5 7 [ 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 2 ] ; O ( ± 1 ) = 1 10 21 [ ± 3 i 0 i ± 1 0 0 0 4 i ± 1 0 ± 1 3 i 0 0 0 4 i 0 0 4 0 0 4 i 4 4 i 0 ] ; O ( ± 2 ) = 1 210 [ 0 0 1 0 0 i 1 i 0 0 0 i 0 0 1 i 1 0 1 i 0 i 1 0 0 0 0 ] ; O ( ± 3 ) = 1 2 35 [ 1 i 0 i ± 1 0 0 0 0 i ± 1 0 ± 1 i 0 0 0 0 0 0 0 0 0 0 0 0 0 ] .
H ( 0 ) = [ [ H x x ( 0 ) H x y ( 0 ) H x z ( 0 ) H y x ( 0 ) H y y ( 0 ) H y z ( 0 ) H z x ( 0 ) H z y ( 0 ) H z z ( 0 ) ] ] = 1 105 [ 3 0 0 0 1 0 0 0 4 0 1 0 1 0 0 0 0 0 0 0 4 0 0 0 4 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 3 0 0 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 0 4 4 0 0 0 0 4 0 0 0 0 4 0 0 4 0 4 0 0 0 0 8 ] ; H ( ± 1 ) = 1 42 5 [ 0 0 ± 3 0 0 i i ± 1 0 0 0 i 0 0 ± 1 ± 1 3 i 0 ± 3 i 0 i ± 1 0 0 0 4 i 0 0 i 0 0 ± 1 0 0 0 0 0 ± 1 0 0 3 i 0 0 0 0 0 ± 1 0 0 3 i 0 0 4 i ± 1 0 ± 1 3 i 0 0 4 0 ± 3 i 0 i ± 1 0 0 0 4 i ± 1 0 ± 1 3 i 0 0 0 4 i 0 0 4 0 0 4 i 4 4 i 0 ] ; H ( ± 2 ) = 1 21 10 [ 2 ± i 0 ± i 0 0 0 0 2 ± i 0 0 0 ± i 0 0 0 2 i 0 0 2 0 0 2 2 2 0 ± i 0 0 0 ± i 0 0 0 2 i 0 ± i 0 ± i 2 0 0 0 2 0 0 2 i 0 0 2 2 2 0 0 0 2 0 0 2 i 2 2 i 0 0 0 2 i 0 0 2 2 i 2 0 2 2 i 0 2 i 2 0 0 0 0 ] ; H ( ± 3 ) = 1 6 35 [ 0 0 1 0 0 i 1 i 0 0 0 i 0 0 ± 1 i ± 1 0 1 i 0 i ± 1 0 0 0 0 0 0 i 0 0 ± 1 i ± 1 0 0 0 ± 1 0 0 i ± 1 i 0 i ± 1 0 ± 1 i 0 0 0 0 1 i 0 i ± 1 0 0 0 0 i ± 1 0 ± 1 i 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ; H ( ± 4 ) = 1 3 70 [ 1 i 0 i 1 0 0 0 0 i 1 0 1 ± i 0 0 0 0 1 i 0 ± i 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] .
E 5 = e T i j k l m i j k l E m ( r , ω 0 ) ,
T i j k l m = r i r j r k r l r m 1 9 r 2 ( r i r j r k δ l m + r i r j r l δ k m + r i r j r m δ k l + r i r k r l δ j m + r i r k r m δ j l + r i r l r m δ j k + r j r k r l δ i m + r j r k r m δ i l + r j r l r m δ i k + r k r l r m δ i j ) + 1 21 r 4 ( r i δ j k l m + r j δ i k l m + r k δ i j l m + r l δ i j k m + r m δ i j k l ) ,
T ( Δ m ) = [ [ T x ( Δ m ) , T y ( Δ m ) , T z ( Δ m ) ] ] ,
T x ( Δ m ) = [ [ T x x x ( Δ m ) T x x y ( Δ m ) T x x z ( Δ m ) T x y x ( Δ m ) T x y y ( Δ m ) T x y z ( Δ m ) T x z x ( Δ m ) T x z y ( Δ m ) T x z z ( Δ m ) ] ] T y ( Δ m ) = [ [ T y x x ( Δ m ) T y x y ( Δ m ) T y x z ( Δ m ) T y y x ( Δ m ) T y y y ( Δ m ) T y y z ( Δ m ) T y z x ( Δ m ) T y z y ( Δ m ) T y z z ( Δ m ) ] ] T z ( Δ m ) = [ [ T z x x ( Δ m ) T z x y ( Δ m ) T z x z ( Δ m ) T z y x ( Δ m ) T z y y ( Δ m ) T z y z ( Δ m ) T z z x ( Δ m ) T z z y ( Δ m ) T z z z ( Δ m ) ] ] .

Metrics