Abstract

Although the diode pumped alkali laser (DPAL) works in a three-level scheme, higher energy-state excitation and ionization processes exist during operation, which may lead to deleterious effects on laser performance. In this paper, we report the ionization degree measurement in the gain medium of an operational hydrocarbon-free Rb DPAL by using the optogalvanic method. The results show that, at the pulsed mode with a duration of ~1 ms, a maximal ionization degree of ~0.06% is obtained at a pump power of 140 W. While in the CW mode, the plasma reaches an ionization degree as high as ~2% at a pump power of 110 W, which is mainly due to the enough time for sufficient plasma development. A comparison with our previous work [Opt. Lett. 39, 6501 (2014)] as well as modeling results is made and discussed. The influences of different population transfer channels on laser performance are simulated and analyzed. The results show that, for a typical hydrocarbon-free Rb laser (pump intensity of 15 kW/cm2, helium pressure of 10 atm and cell temperature of 438 K), all the high-energy excitation effects give an overall negative influence on laser efficiency of ~3.78%, while the top two influencing channels are the photoionization (~1.8%) and the energy pooling (~1.53%). The work in this paper experimentally reveals the influence of the macroscopic ionization evolution process on an operational DPAL for the first time, which would be helpful for a more comprehensive understanding of the physics in DPALs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental measurement of ionization degree in diode-pumped rubidium laser gain medium

Zining Yang, Lei Zuo, Weihong Hua, Hongyan Wang, and Xiaojun Xu
Opt. Lett. 39(22) 6501-6504 (2014)

Photoionization in alkali lasers

R.J. Knize, B.V. Zhdanov, and M.K. Shaffer
Opt. Express 19(8) 7894-7902 (2011)

Influence of energy pooling and ionization on physical features of a diode-pumped alkali laser

Guofei An, You Wang, Juhong Han, He Cai, Jie Zhou, Wei Zhang, Liangping Xue, Hongyuan Wang, Ming Gao, and Zhigang Jiang
Opt. Express 23(20) 26414-26425 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  2. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2013).
    [Crossref]
  3. Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211–95213 (2014).
  4. G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
    [Crossref]
  5. D. von der Goltz, W. Hansen, and J. Richter, “Experimental and Theoretical Oscillator Strengths of RbI,” Phys. Scr. 30(4), 244–248 (1984).
    [Crossref]
  6. Y. Shen, K. Dai, B. Mu, S. Wang, and X. Cui, “Energy-Pooling Collisions in Rubidium: 5P3/2+5P3/2→5S+(nl = 5D,7S),” Chin. Phys. Lett. 22(11), 2805–2807 (2005).
    [Crossref]
  7. M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
    [Crossref]
  8. L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
    [Crossref]
  9. W. F. Krupke, “Diode pumped alkali lasers (DPALs): an overview,” Proc. SPIE 7005, 700521 (2008).
    [Crossref]
  10. S. S. Q. Wu, “Hydrocarbon-free resonance transition 795 nm rubidium laser,” University of California, San Diego, Thesis (2009).
  11. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
    [Crossref] [PubMed]
  12. B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962(2), 271–283 (2014).
  13. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
    [Crossref]
  14. B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  15. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “CFD DPAL modeling for various schemes of flow configurations,” Proc. SPIE 9251(12), 1523–1526 (2014).
  16. A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120(19), 193105 (2016).
    [Crossref]
  17. L. Ge, W. Hua, H. Wang, Z. Yang, and X. Xu, “Study on photoionization in a rubidium diode-pumped alkali laser gain medium with the optogalvanic method,” Opt. Lett. 38(2), 199–201 (2013).
    [Crossref] [PubMed]
  18. Z. Yang, L. Zuo, W. Hua, H. Wang, and X. Xu, “Experimental measurement of ionization degree in diode-pumped rubidium laser gain medium,” Opt. Lett. 39(22), 6501–6504 (2014).
    [Crossref] [PubMed]
  19. X. Yuan and L. L. Raja, “Computational study of capacitively coupled high-pressure glow discharges in helium,” IEEE Trans. Plasma Sci. 31(4), 495–503 (2003).
    [Crossref]
  20. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
    [Crossref] [PubMed]
  21. X. Zhao, Z. Yang, W. Hua, H. Wang, and X. Xu, “Real-time measurement of temperature rise in a pulsed diode pumped rubidium vapor laser by potassium tracing atom based absorption spectroscopy,” Opt. Express 25(6), 5841–5851 (2017).
    [Crossref] [PubMed]
  22. H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun. 296(6), 101–105 (2013).
  23. A. Fink and E. Brunner, “Optimization of continuous flow pump cells used for the production of hyperpolarized 129 Xe: A theoretical study,” Appl. Phys. B 89(1), 65–71 (2007).
    [Crossref]
  24. D. A. Steck, “Rubidium 85 D line data,” (2001).
  25. O. S. Heavens, “Radiative Transition Probabilities of the Lower Excited States of the Alkali Metals,” J. Opt. Soc. Am. A 51(10), 1058–1061 (1961).
    [Crossref]
  26. J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
    [Crossref]
  27. M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
    [Crossref] [PubMed]
  28. H. P. Wu, Q. C. Guo, K. Dai, and Y. F. Shen, “Collisional energy transfer between excited Rb atoms,” Guangpuxue Yu Guangpu Fenxi 29(8), 2038–2041 (2009).
    [PubMed]
  29. B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
    [PubMed]
  30. S. A. Bakhramov, E. V. Vaganov, A. M. Kokhkharov, and O. R. Parpiev, “Laser-induced resonant multiphoton and collisional ionizations of rubidium atoms,” Proc. SPIE 4748, 205 (2002).
  31. S. Wane, “Radiative recombination in rubidium,” J. Phys. B 18(19), 3881–3893 (1985).
    [Crossref]
  32. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL,” J. Opt. Soc. Am. B 34(2), 279–286 (2017).
    [Crossref]
  33. M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
    [Crossref]
  34. K. Bartschat and M. J. Kushner, “Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology,” Proc. Natl. Acad. Sci. U.S.A. 113(26), 7026–7034 (2016).
    [Crossref] [PubMed]

2017 (2)

2016 (5)

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

K. Bartschat and M. J. Kushner, “Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology,” Proc. Natl. Acad. Sci. U.S.A. 113(26), 7026–7034 (2016).
[Crossref] [PubMed]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Measurements of the gain medium temperature in an operating Cs DPAL,” Opt. Express 24(17), 19286–19292 (2016).
[Crossref] [PubMed]

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120(19), 193105 (2016).
[Crossref]

2014 (5)

Z. Yang, L. Zuo, W. Hua, H. Wang, and X. Xu, “Experimental measurement of ionization degree in diode-pumped rubidium laser gain medium,” Opt. Lett. 39(22), 6501–6504 (2014).
[Crossref] [PubMed]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962(2), 271–283 (2014).

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
[Crossref]

Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211–95213 (2014).

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “CFD DPAL modeling for various schemes of flow configurations,” Proc. SPIE 9251(12), 1523–1526 (2014).

2013 (4)

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun. 296(6), 101–105 (2013).

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

L. Ge, W. Hua, H. Wang, Z. Yang, and X. Xu, “Study on photoionization in a rubidium diode-pumped alkali laser gain medium with the optogalvanic method,” Opt. Lett. 38(2), 199–201 (2013).
[Crossref] [PubMed]

2012 (3)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
[Crossref]

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (1)

H. P. Wu, Q. C. Guo, K. Dai, and Y. F. Shen, “Collisional energy transfer between excited Rb atoms,” Guangpuxue Yu Guangpu Fenxi 29(8), 2038–2041 (2009).
[PubMed]

2008 (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs): an overview,” Proc. SPIE 7005, 700521 (2008).
[Crossref]

2007 (1)

A. Fink and E. Brunner, “Optimization of continuous flow pump cells used for the production of hyperpolarized 129 Xe: A theoretical study,” Appl. Phys. B 89(1), 65–71 (2007).
[Crossref]

2006 (1)

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
[PubMed]

2005 (1)

Y. Shen, K. Dai, B. Mu, S. Wang, and X. Cui, “Energy-Pooling Collisions in Rubidium: 5P3/2+5P3/2→5S+(nl = 5D,7S),” Chin. Phys. Lett. 22(11), 2805–2807 (2005).
[Crossref]

2003 (1)

X. Yuan and L. L. Raja, “Computational study of capacitively coupled high-pressure glow discharges in helium,” IEEE Trans. Plasma Sci. 31(4), 495–503 (2003).
[Crossref]

2002 (1)

S. A. Bakhramov, E. V. Vaganov, A. M. Kokhkharov, and O. R. Parpiev, “Laser-induced resonant multiphoton and collisional ionizations of rubidium atoms,” Proc. SPIE 4748, 205 (2002).

1987 (1)

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
[Crossref]

1985 (1)

S. Wane, “Radiative recombination in rubidium,” J. Phys. B 18(19), 3881–3893 (1985).
[Crossref]

1984 (1)

D. von der Goltz, W. Hansen, and J. Richter, “Experimental and Theoretical Oscillator Strengths of RbI,” Phys. Scr. 30(4), 244–248 (1984).
[Crossref]

1982 (1)

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

1961 (1)

O. S. Heavens, “Radiative Transition Probabilities of the Lower Excited States of the Alkali Metals,” J. Opt. Soc. Am. A 51(10), 1058–1061 (1961).
[Crossref]

An, G.

Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211–95213 (2014).

Bakhramov, S. A.

S. A. Bakhramov, E. V. Vaganov, A. M. Kokhkharov, and O. R. Parpiev, “Laser-induced resonant multiphoton and collisional ionizations of rubidium atoms,” Proc. SPIE 4748, 205 (2002).

Barbier, L.

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
[Crossref]

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

Barmashenko, B. D.

Bartschat, K.

K. Bartschat and M. J. Kushner, “Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology,” Proc. Natl. Acad. Sci. U.S.A. 113(26), 7026–7034 (2016).
[Crossref] [PubMed]

Brunner, E.

A. Fink and E. Brunner, “Optimization of continuous flow pump cells used for the production of hyperpolarized 129 Xe: A theoretical study,” Appl. Phys. B 89(1), 65–71 (2007).
[Crossref]

Byrne, D.

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
[Crossref]

Cheret, M.

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
[Crossref]

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

Cui, X.

Y. Shen, K. Dai, B. Mu, S. Wang, and X. Cui, “Energy-Pooling Collisions in Rubidium: 5P3/2+5P3/2→5S+(nl = 5D,7S),” Chin. Phys. Lett. 22(11), 2805–2807 (2005).
[Crossref]

Cui, X. H.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
[PubMed]

Dai, K.

H. P. Wu, Q. C. Guo, K. Dai, and Y. F. Shen, “Collisional energy transfer between excited Rb atoms,” Guangpuxue Yu Guangpu Fenxi 29(8), 2038–2041 (2009).
[PubMed]

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
[PubMed]

Y. Shen, K. Dai, B. Mu, S. Wang, and X. Cui, “Energy-Pooling Collisions in Rubidium: 5P3/2+5P3/2→5S+(nl = 5D,7S),” Chin. Phys. Lett. 22(11), 2805–2807 (2005).
[Crossref]

Deloche, R.

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

Endo, M.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Fink, A.

A. Fink and E. Brunner, “Optimization of continuous flow pump cells used for the production of hyperpolarized 129 Xe: A theoretical study,” Appl. Phys. B 89(1), 65–71 (2007).
[Crossref]

Ge, L.

Gearba, M. A.

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
[Crossref] [PubMed]

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
[Crossref]

Guild, E. M.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Guo, Q. C.

H. P. Wu, Q. C. Guo, K. Dai, and Y. F. Shen, “Collisional energy transfer between excited Rb atoms,” Guangpuxue Yu Guangpu Fenxi 29(8), 2038–2041 (2009).
[PubMed]

Haiducek, J. D.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962(2), 271–283 (2014).

Hansen, W.

D. von der Goltz, W. Hansen, and J. Richter, “Experimental and Theoretical Oscillator Strengths of RbI,” Phys. Scr. 30(4), 244–248 (1984).
[Crossref]

Heavens, O. S.

O. S. Heavens, “Radiative Transition Probabilities of the Lower Excited States of the Alkali Metals,” J. Opt. Soc. Am. A 51(10), 1058–1061 (1961).
[Crossref]

Hostutler, D. A.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962(2), 271–283 (2014).

Hua, W.

Jemo, G.

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
[Crossref]

Knize, R. J.

Kokhkharov, A. M.

S. A. Bakhramov, E. V. Vaganov, A. M. Kokhkharov, and O. R. Parpiev, “Laser-induced resonant multiphoton and collisional ionizations of rubidium atoms,” Proc. SPIE 4748, 205 (2002).

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs): an overview,” Proc. SPIE 7005, 700521 (2008).
[Crossref]

Kushner, M. J.

A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120(19), 193105 (2016).
[Crossref]

K. Bartschat and M. J. Kushner, “Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology,” Proc. Natl. Acad. Sci. U.S.A. 113(26), 7026–7034 (2016).
[Crossref] [PubMed]

Lilly, T. C.

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
[Crossref]

Lindinger, W.

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

Lloyd, R.

Lu, Q.

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun. 296(6), 101–105 (2013).

Madden, T. J.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962(2), 271–283 (2014).

Markosyan, A. H.

A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120(19), 193105 (2016).
[Crossref]

Meeter, R.

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
[Crossref]

Moran, P. J.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Mu, B.

Y. Shen, K. Dai, B. Mu, S. Wang, and X. Cui, “Energy-Pooling Collisions in Rubidium: 5P3/2+5P3/2→5S+(nl = 5D,7S),” Chin. Phys. Lett. 22(11), 2805–2807 (2005).
[Crossref]

Mu, B. X.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
[PubMed]

Nagai, T.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Nagaoka, H.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Nagaoka, R.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Oliker, B. Q.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962(2), 271–283 (2014).

Parpiev, O. R.

S. A. Bakhramov, E. V. Vaganov, A. M. Kokhkharov, and O. R. Parpiev, “Laser-induced resonant multiphoton and collisional ionizations of rubidium atoms,” Proc. SPIE 4748, 205 (2002).

Patterson, B. M.

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
[Crossref] [PubMed]

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
[Crossref]

Pitz, G. A.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962(2), 271–283 (2014).

Plyler, J.

Raja, L. L.

X. Yuan and L. L. Raja, “Computational study of capacitively coupled high-pressure glow discharges in helium,” IEEE Trans. Plasma Sci. 31(4), 495–503 (2003).
[Crossref]

Richter, J.

D. von der Goltz, W. Hansen, and J. Richter, “Experimental and Theoretical Oscillator Strengths of RbI,” Phys. Scr. 30(4), 244–248 (1984).
[Crossref]

Rosenwaks, S.

Rotondaro, M. D.

Rudolph, W.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962(2), 271–283 (2014).

Sell, J. F.

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
[Crossref]

M. A. Gearba, J. F. Sell, B. M. Patterson, R. Lloyd, J. Plyler, and R. J. Knize, “Temperature dependence of Rb 5P fine-structure transfer induced by 4He collisions,” Opt. Lett. 37(10), 1637–1639 (2012).
[Crossref] [PubMed]

Shaffer, M. K.

Shen, Y.

Y. Shen, K. Dai, B. Mu, S. Wang, and X. Cui, “Energy-Pooling Collisions in Rubidium: 5P3/2+5P3/2→5S+(nl = 5D,7S),” Chin. Phys. Lett. 22(11), 2805–2807 (2005).
[Crossref]

Shen, Y. F.

H. P. Wu, Q. C. Guo, K. Dai, and Y. F. Shen, “Collisional energy transfer between excited Rb atoms,” Guangpuxue Yu Guangpu Fenxi 29(8), 2038–2041 (2009).
[PubMed]

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
[PubMed]

Stalnaker, D. M.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Steck, D. A.

D. A. Steck, “Rubidium 85 D line data,” (2001).

Townsend, S. W.

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

Vaganov, E. V.

S. A. Bakhramov, E. V. Vaganov, A. M. Kokhkharov, and O. R. Parpiev, “Laser-induced resonant multiphoton and collisional ionizations of rubidium atoms,” Proc. SPIE 4748, 205 (2002).

von der Goltz, D.

D. von der Goltz, W. Hansen, and J. Richter, “Experimental and Theoretical Oscillator Strengths of RbI,” Phys. Scr. 30(4), 244–248 (1984).
[Crossref]

Waichman, K.

Wane, S.

S. Wane, “Radiative recombination in rubidium,” J. Phys. B 18(19), 3881–3893 (1985).
[Crossref]

Wang, H.

Wang, S.

Y. Shen, K. Dai, B. Mu, S. Wang, and X. Cui, “Energy-Pooling Collisions in Rubidium: 5P3/2+5P3/2→5S+(nl = 5D,7S),” Chin. Phys. Lett. 22(11), 2805–2807 (2005).
[Crossref]

Wang, S. Y.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
[PubMed]

Wang, Y.

Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211–95213 (2014).

Wani, F.

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

Wu, H. P.

H. P. Wu, Q. C. Guo, K. Dai, and Y. F. Shen, “Collisional energy transfer between excited Rb atoms,” Guangpuxue Yu Guangpu Fenxi 29(8), 2038–2041 (2009).
[PubMed]

Xu, X.

Yang, Z.

Yuan, Q. H.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
[PubMed]

Yuan, X.

X. Yuan and L. L. Raja, “Computational study of capacitively coupled high-pressure glow discharges in helium,” IEEE Trans. Plasma Sci. 31(4), 495–503 (2003).
[Crossref]

Zhang, G. T.

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
[PubMed]

Zhao, X.

Zhdanov, B. V.

Zuo, L.

Appl. Phys. B (1)

A. Fink and E. Brunner, “Optimization of continuous flow pump cells used for the production of hyperpolarized 129 Xe: A theoretical study,” Appl. Phys. B 89(1), 65–71 (2007).
[Crossref]

Chin. Phys. Lett. (1)

Y. Shen, K. Dai, B. Mu, S. Wang, and X. Cui, “Energy-Pooling Collisions in Rubidium: 5P3/2+5P3/2→5S+(nl = 5D,7S),” Chin. Phys. Lett. 22(11), 2805–2807 (2005).
[Crossref]

Guangpuxue Yu Guangpu Fenxi (2)

H. P. Wu, Q. C. Guo, K. Dai, and Y. F. Shen, “Collisional energy transfer between excited Rb atoms,” Guangpuxue Yu Guangpu Fenxi 29(8), 2038–2041 (2009).
[PubMed]

B. X. Mu, S. Y. Wang, X. H. Cui, G. T. Zhang, Q. H. Yuan, K. Dai, and Y. F. Shen, “[Energy-pooling collisions of rubidium atoms: Rb (5P(J)) + Rb (5P(J))--> Rb (5S) + Rb (nl = 5D,7S)],” Guangpuxue Yu Guangpu Fenxi 26(9), 1577–1580 (2006).
[PubMed]

IEEE Trans. Plasma Sci. (1)

X. Yuan and L. L. Raja, “Computational study of capacitively coupled high-pressure glow discharges in helium,” IEEE Trans. Plasma Sci. 31(4), 495–503 (2003).
[Crossref]

J. Appl. Phys. (1)

A. H. Markosyan and M. J. Kushner, “Plasma formation in diode pumped alkali lasers sustained in Cs,” J. Appl. Phys. 120(19), 193105 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

O. S. Heavens, “Radiative Transition Probabilities of the Lower Excited States of the Alkali Metals,” J. Opt. Soc. Am. A 51(10), 1058–1061 (1961).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. B (4)

M. Cheret, L. Barbier, W. Lindinger, and R. Deloche, “Penning and associative ionisation of highly excited rubidium atoms,” J. Phys. B 15(19), 3463–3477 (1982).
[Crossref]

L. Barbier and M. Cheret, “Experimental study of Penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d≤nl≤11s),” J. Phys. B 20(6), 1229–1248 (1987).
[Crossref]

J. F. Sell, M. A. Gearba, B. M. Patterson, D. Byrne, G. Jemo, T. C. Lilly, R. Meeter, and R. J. Knize, “Collisional excitation transfer between Rb(5P) states in 50-3000 Torr of 4He,” J. Phys. B 45(5), 55202 (2012).
[Crossref]

S. Wane, “Radiative recombination in rubidium,” J. Phys. B 18(19), 3881–3893 (1985).
[Crossref]

Opt. Commun. (1)

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun. 296(6), 101–105 (2013).

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Scr. (1)

D. von der Goltz, W. Hansen, and J. Richter, “Experimental and Theoretical Oscillator Strengths of RbI,” Phys. Scr. 30(4), 244–248 (1984).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Bartschat and M. J. Kushner, “Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology,” Proc. Natl. Acad. Sci. U.S.A. 113(26), 7026–7034 (2016).
[Crossref] [PubMed]

Proc. SPIE (7)

M. Endo, R. Nagaoka, H. Nagaoka, T. Nagai, and F. Wani, “Wave optics simulation of diode pumped alkali laser (DPAL),” Proc. SPIE 9729, 972907 (2016).
[Crossref]

S. A. Bakhramov, E. V. Vaganov, A. M. Kokhkharov, and O. R. Parpiev, “Laser-induced resonant multiphoton and collisional ionizations of rubidium atoms,” Proc. SPIE 4748, 205 (2002).

Y. Wang and G. An, “Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source,” Proc. SPIE 9521, 95211–95213 (2014).

G. A. Pitz, D. M. Stalnaker, E. M. Guild, B. Q. Oliker, P. J. Moran, S. W. Townsend, and D. A. Hostutler, “Advancements in flowing diode pumped alkali lasers,” Proc. SPIE 9729, 972902 (2016).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs): an overview,” Proc. SPIE 7005, 700521 (2008).
[Crossref]

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of deleterious processes in a static-cell diode pumped alkali laser,” Proc. SPIE 8962(2), 271–283 (2014).

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “CFD DPAL modeling for various schemes of flow configurations,” Proc. SPIE 9251(12), 1523–1526 (2014).

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Other (2)

S. S. Q. Wu, “Hydrocarbon-free resonance transition 795 nm rubidium laser,” University of California, San Diego, Thesis (2009).

D. A. Steck, “Rubidium 85 D line data,” (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental setup. The red, green and black lines represent the diode pump light, the alkali laser and the electrical line, respectively.

Fig. 2
Fig. 2

Typical time evolution signals of pump, laser and photocurrent. The pump power is 110 W with duration of 1 ms (FWHM). The Rb cell is heated to 438 K with 9 atm helium at this temperature, and the bias voltage is 10 V.

Fig. 3
Fig. 3

(a) Laser power versus pump power. (b) Photocurrent and ionization degree versus pump power. The pump duration is 1 ms (FWHM), and the Rb cell is heated to 438 K with 9 atm helium at this temperature.

Fig. 4
Fig. 4

(a) Laser power versus cell temperature. (b) Photocurrent and ionization degree versus temperature. The pump power is 110 W with a duration of 1 ms (FWHM), and the Rb cell is heated to 438 K with 9 atm helium at this temperature.

Fig. 5
Fig. 5

Typical signals of laser and photocurrent under CW pumping. The pump power is 110 W and the Rb cell is heated to 438 K with 9 atm helium at this temperature.

Fig. 6
Fig. 6

Photocurrent and ionization degree versus pump power. The Rb cell is heated to 438 K with 9 atm helium at this temperature.

Fig. 7
Fig. 7

Population transfer channels that being considered in the model.

Tables (2)

Tables Icon

Table 1 Rate constants and cross sections for different processes

Tables Icon

Table 2 Influence of different population transfer channels on laser performance

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n R b + = n e = I ZeS( v e + v R b + ) ,
v=μE,
μ= μ (760/p),
η= n Rb+ / n Rb ,

Metrics