Abstract

We experimentally demonstrate transverse load and strain sensing based on a fiber optic Fabry-Perot interferometer (FPI) with special air cavity, which was created by fusion splicing single mode fiber (SMF), hollow core fiber (HCF) and several electrical arc discharges. The cavity height of this structure is higher than the cladding diameter of SMF so that it can sense transverse load with high sensitivity. The transverse load sensitivity of this air cavity FPI sensor is 1.31 nm∕N and about 5 times more sensitive compared to the current fiber tip interferometer (0.2526 nm∕N). Meanwhile, this sensor also can measure strain and the strain sensitivity of 3.29 pm∕με is achieved. In addition, the low temperature sensitivity (1.08 pm/°C) of the sensor can reduce the temperature-induced measurement error. This novel air cavity FPI can be developed and used as high-sensitivity transverse load and strain sensor with temperature-insensitive.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement

De-Wen Duan, Yun-jiang Rao, Yu-Song Hou, and Tao Zhu
Appl. Opt. 51(8) 1033-1036 (2012)

Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri
Opt. Express 20(7) 7112-7118 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  2. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
    [Crossref] [PubMed]
  3. R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
    [Crossref] [PubMed]
  4. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref] [PubMed]
  5. J. Tian, Y. Lu, Q. Zhang, and M. Han, “Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers,” Opt. Express 21(5), 6633–6639 (2013).
    [Crossref] [PubMed]
  6. C. Wu, Z. Liu, A. P. Zhang, B. O. Guan, and H. Y. Tam, “In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing,” Opt. Express 22(18), 21757–21766 (2014).
    [Crossref] [PubMed]
  7. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [Crossref] [PubMed]
  8. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
    [Crossref] [PubMed]
  9. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref] [PubMed]
  10. Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
    [Crossref]
  11. G. K. Costa, P. M. Gouvêa, L. M. Soares, J. M. Pereira, F. Favero, A. M. Braga, P. Palffy-Muhoray, A. C. Bruno, and I. C. Carvalho, “In-fiber Fabry-Perot interferometer for strain and magnetic field sensing,” Opt. Express 24(13), 14690–14696 (2016).
    [Crossref] [PubMed]
  12. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  13. E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
    [Crossref]
  14. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
    [Crossref] [PubMed]
  15. S. Pevec and D. Donlagic, “Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index,” Opt. Lett. 39(21), 6221–6224 (2014).
    [Crossref] [PubMed]
  16. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, ““Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor. Actuat,” A-Phys. 138(1), 248–260 (2007).
  17. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on Fresnel reflection modulated by Fabry–Perot interference,” J. Lightwave Technol. 28(19), 2799–2803 (2010).
    [Crossref]
  18. D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
    [Crossref]
  19. J. S. Santos, I. M. Raimundo, C. M. Cordeiro, C. R. Biazoli, C. A. Gouveia, and P. A. Jorge, ““Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing,” Sensor. Actuat,” Biol. Chem. 196, 99–105 (2014).
  20. J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19(13), 12418–12426 (2011).
    [Crossref] [PubMed]
  21. C. Chen, Y. S. Yu, X. Y. Zhang, R. Yang, C. C. Zhu, C. Wang, Y. Xue, F. Zhu, Q. D. Chen, and H. B. Sun, “Compact fiber tip modal interferometer for high-temperature and transverse load measurements,” Opt. Lett. 38(17), 3202–3204 (2013).
    [Crossref] [PubMed]
  22. Q. Chen and P. Lu, “Fiber Bragg gratings and their applications as temperature and humidity sensors,” in Atomic, Molecular and Optical Physics, L.T. Chen, eds. (Nova Science Publishers, 2008), pp. 235–260.

2016 (2)

2014 (6)

2013 (3)

2012 (5)

2011 (1)

2010 (1)

2008 (2)

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

2007 (1)

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, ““Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor. Actuat,” A-Phys. 138(1), 248–260 (2007).

André, R. M.

Araujo, L.

Badcock, R. A.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, ““Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor. Actuat,” A-Phys. 138(1), 248–260 (2007).

Bai, Z.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Bartelt, H.

Becker, M.

Biazoli, C. R.

J. S. Santos, I. M. Raimundo, C. M. Cordeiro, C. R. Biazoli, C. A. Gouveia, and P. A. Jorge, ““Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing,” Sensor. Actuat,” Biol. Chem. 196, 99–105 (2014).

Bierlich, J.

Bouwmans, G.

Braga, A. M.

Bruno, A. C.

Carvalho, I. C.

Chen, C.

Chen, J. H.

Chen, Q. D.

Choi, E. S.

Choi, H. Y.

Cordeiro, C. M.

J. S. Santos, I. M. Raimundo, C. M. Cordeiro, C. R. Biazoli, C. A. Gouveia, and P. A. Jorge, ““Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing,” Sensor. Actuat,” Biol. Chem. 196, 99–105 (2014).

Costa, G. K.

Dellith, J.

Ding, X.

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Donlagic, D.

Du, Y.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Duan, D. W.

Favero, F.

Favero, F. C.

Feng, D.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Feng, Z.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Fernando, G. F.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, ““Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor. Actuat,” A-Phys. 138(1), 248–260 (2007).

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Gouvêa, P. M.

Gouveia, C. A.

J. S. Santos, I. M. Raimundo, C. M. Cordeiro, C. R. Biazoli, C. A. Gouveia, and P. A. Jorge, ““Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing,” Sensor. Actuat,” Biol. Chem. 196, 99–105 (2014).

Guan, B. O.

Han, M.

He, W. X.

Hou, Y. S.

Hu, M.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Hu, T. Y.

Huang, X. G.

Jin, L.

Jin, W.

Jorge, P. A.

J. S. Santos, I. M. Raimundo, C. M. Cordeiro, C. R. Biazoli, C. A. Gouveia, and P. A. Jorge, ““Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing,” Sensor. Actuat,” Biol. Chem. 196, 99–105 (2014).

Ju, J.

Kobelke, J.

Latifi, H.

Lee, B. H.

Li, E.

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Li, Z.

Liao, C.

Liao, C. R.

Liu, S.

Liu, Z.

Lu, Y.

Lv, R. Q.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

Ma, J.

Machavaram, V. R.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, ““Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor. Actuat,” A-Phys. 138(1), 248–260 (2007).

Marques, M. B.

Paek, U. C.

Palffy-Muhoray, P.

Park, K. S.

Park, S. J.

Peng, G. D.

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Pereira, J. M.

Pevec, S.

Pruneri, V.

Qiao, X.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Qin, B.

Raimundo, I. M.

J. S. Santos, I. M. Raimundo, C. M. Cordeiro, C. R. Biazoli, C. A. Gouveia, and P. A. Jorge, ““Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing,” Sensor. Actuat,” Biol. Chem. 196, 99–105 (2014).

Rao, Y. J.

Rong, Q.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Rothhardt, M.

Santos, J. L.

Santos, J. S.

J. S. Santos, I. M. Raimundo, C. M. Cordeiro, C. R. Biazoli, C. A. Gouveia, and P. A. Jorge, ““Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing,” Sensor. Actuat,” Biol. Chem. 196, 99–105 (2014).

Schuster, K.

Soares, L. M.

Su, D.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Sun, H.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Sun, H. B.

Tam, H. Y.

Tang, J.

Tian, J.

Villatoro, J.

Wang, C.

Wang, D.

Wang, D. N.

Wang, G.

Wang, Q.

Wang, Y.

Warren-Smith, S. C.

Wu, C.

Xu, L.

Xue, Y.

Yang, J.

Yang, K.

Yang, R.

Ying, Y.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

Yu, Y. S.

Yuan, L.

Zhang, A. P.

Zhang, J.

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Zhang, Q.

Zhang, X. Y.

Zhang, Y.

Zhao, J.

Zhao, J. R.

Zhao, Y.

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

Zhong, X.

Zhou, A.

Zhou, J.

Zhu, C. C.

Zhu, F.

Zhu, T.

Zhu, Z.

Zibaii, M. I.

A-Phys. (1)

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, ““Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etching,” Sensor. Actuat,” A-Phys. 138(1), 248–260 (2007).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Biol. Chem. (1)

J. S. Santos, I. M. Raimundo, C. M. Cordeiro, C. R. Biazoli, C. A. Gouveia, and P. A. Jorge, ““Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing,” Sensor. Actuat,” Biol. Chem. 196, 99–105 (2014).

J. Lightwave Technol. (1)

Opt. Commun. (1)

D. Su, X. Qiao, Q. Rong, H. Sun, J. Zhang, Z. Bai, Y. Du, D. Feng, Y. Wang, M. Hu, and Z. Feng, “A fiber Fabry–Perot interferometer based on a PVA coating for humidity measurement,” Opt. Commun. 311, 107–110 (2013).
[Crossref]

Opt. Express (8)

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19(13), 12418–12426 (2011).
[Crossref] [PubMed]

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
[Crossref] [PubMed]

M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
[Crossref] [PubMed]

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
[Crossref] [PubMed]

J. Tian, Y. Lu, Q. Zhang, and M. Han, “Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers,” Opt. Express 21(5), 6633–6639 (2013).
[Crossref] [PubMed]

C. Wu, Z. Liu, A. P. Zhang, B. O. Guan, and H. Y. Tam, “In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing,” Opt. Express 22(18), 21757–21766 (2014).
[Crossref] [PubMed]

R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
[Crossref] [PubMed]

G. K. Costa, P. M. Gouvêa, L. M. Soares, J. M. Pereira, F. Favero, A. M. Braga, P. Palffy-Muhoray, A. C. Bruno, and I. C. Carvalho, “In-fiber Fabry-Perot interferometer for strain and magnetic field sensing,” Opt. Express 24(13), 14690–14696 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

Y. Zhao, R. Q. Lv, Y. Ying, and Q. Wang, “Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid,” Opt. Laser Technol. 44(4), 899–902 (2012).
[Crossref]

Opt. Lett. (6)

Other (1)

Q. Chen and P. Lu, “Fiber Bragg gratings and their applications as temperature and humidity sensors,” in Atomic, Molecular and Optical Physics, L.T. Chen, eds. (Nova Science Publishers, 2008), pp. 235–260.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a), (b), and (c) Schematic of the fabrication process of the air cavity FPI.

Fig. 2
Fig. 2

(a), (b) and (c) Microscope images of the created air bubble with 120 × 141 μm (length × height), 90 × 130 μm, 82 × 146 μm, respectively;(d)–(f) the corresponding reflection spectra of 120 × 141 μm (length × high), 90 × 130 μm, 82 × 146 μm, respectively.

Fig. 3
Fig. 3

Experimental setup of transverse load measurement.

Fig. 4
Fig. 4

(a) Transverse load response of the air cavity FPIs; (b) Reflection spectrum evolution of air cavity FPI with 82 × 146 μm while the load increases from 0 to 3.63 N.

Fig. 5
Fig. 5

Experimental setup of strain measurement

Fig. 6
Fig. 6

(a) Axial strain response of the air cavity FPIs; (b) Reflection spectrum evolution of the air cavity FPI with 82 × 146 μm while the strain increases from 0 to 1100 με.

Fig. 7
Fig. 7

(a) The temperature response of the air cavity FPIs; (b) Reflection spectrum evolution of air cavity FPI with 82 × 146 μm while the temperature increases from 50 °C to 500 °C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cos( ϕ )
λ FSR = λ 2 /( 2nL )
Δλ ΔT =( ΔL ΔTL + Δn ΔTn )λ=( ε+κ )λ

Metrics