Abstract

A real-time broadband radio frequency (RF) spectrum analyzer is proposed and experimentally demonstrated to rapidly measure the RF spectrum of broadband optical signal. Cross phase modulation in the highly-nonlinear fiber is used to convert the RF spectrum carried by the pump to the optical spectrum of the probe signal, then the optical spectrum is real-time analyzed with the parametric spectro-temporal analyzer (PASTA) technology. The system performances are investigated in detail, including bandwidth, resolution, frame rate, and dynamic range. It achieves large RF bandwidth of over 800 GHz, as well as 91-MHz frame rate without sacrificing the resolution. It is noted that 91-MHz frame rate is several orders of magnitude improvement over those previous reported all-optical RF spectrum analyzers. As a proof-of-concept demonstration, this real-time broadband RF spectrum analyzer successfully characterizes the ultra-short pulse trains with repetition rate of 160GHz, which is far beyond capability of the conventional electrical spectrum analyzer. It presents a new way to implement rapid and broadband RF spectrum measurement, and would be of great interests for some ultrafast scenarios, where the real-time RF spectrum analysis can be applied.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance of parametric spectro-temporal analyzer (PASTA)

Chi Zhang, Xiaoming Wei, and Kenneth K. Y. Wong
Opt. Express 21(26) 32111-32122 (2013)

Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification

Yuhua Duan, Liao Chen, Haidong Zhou, Xi Zhou, Chi Zhang, and Xinliang Zhang
Opt. Express 25(7) 7520-7529 (2017)

Frequency-domain light intensity spectrum analyzer based on temporal convolution

Liao Chen, Yuhua Duan, Chi Zhang, and Xinliang Zhang
Opt. Lett. 42(14) 2726-2729 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. Henry and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, 1994).
  2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  3. R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwave Technol. 4(11), 1711–1716 (1986).
    [Crossref]
  4. J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
    [Crossref]
  5. I. A. Glover, S. R. Pennock, and P. R. Shepherd, “Mixers: theory and design,” in Microwave Devices, Circuits and Subsystems for Communications Engineering (John Wiley, 2005), pp. 311–376.
  6. H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-Speed OTDM-Transmission Technology,” J. Lightwave Technol. 24(12), 4616–4627 (2006).
    [Crossref]
  7. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1(2), 308–437 (2009).
    [Crossref]
  8. C. Dorrer and D. N. Maywar, “RF spectrum analysis of optical signals using Nonlinear Optics,” J. Lightwave Technol. 22(1), 265–274 (2004).
    [Crossref]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  10. C. Dorrer and D. N. Maywar, “Ultra-high bandwidth RF spectrum analyser for optical signals,” Electron. Lett. 39(13), 1004–1005 (2003).
    [Crossref]
  11. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [Crossref]
  12. B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
    [Crossref] [PubMed]
  13. M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22(18), 21488–21498 (2014).
    [Crossref] [PubMed]
  14. T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-Chip-Based Real-Time Dispersion Monitoring for 640 Gbit/s DPSK Signals,” J. Lightwave Technol. 29(12), 1790–1796 (2011).
    [Crossref]
  15. T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-impairment monitoring at 320 Gb/s based on cross phase modulation radio-frequency spectrum analyzer,” IEEE Photonics Technol. Lett. 22(6), 428–430 (2010).
    [Crossref]
  16. T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
    [Crossref]
  17. C. Heras, J. Subías, J. Pelayo, and F. Villuendas, “High resolution light intensity spectrum analyzer (LISA) based on Brillouin optical filter,” Opt. Express 15(7), 3708–3714 (2007).
    [Crossref] [PubMed]
  18. C. C. K. Chan, Optical performance monitoring: advanced techniques for next-generation photonic networks (Academic, 2010).
  19. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  20. C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).
    [PubMed]
  21. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [Crossref]
  22. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
    [Crossref] [PubMed]
  23. F. Jiang, J. H. Wong, H. Q. Lam, J. Zhou, S. Aditya, P. H. Lim, K. E. K. Lee, P. P. Shum, and X. Zhang, “An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter,” Opt. Express 21(14), 16381–16389 (2013).
    [Crossref] [PubMed]
  24. E. Lichtman, A. A. Friesem, R. G. Waarts, and H. H. Yaffe, “Exact solution of four-wave mixing of copropagating light beams in a Kerr medium,” J. Opt. Soc. Am. B 4(11), 1801–1805 (1987).
    [Crossref]
  25. B. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [Crossref]
  26. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
    [Crossref]
  27. C. Zhang, X. Wei, and K. K. Y. Wong, “Performance of parametric spectro-temporal analyzer (PASTA),” Opt. Express 21(26), 32111–32122 (2013).
    [Crossref] [PubMed]
  28. R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
    [Crossref]
  29. C. Gu, B. Ilan, and J. E. Sharping, “Demonstration of nondegenerate spectrum reversal in optical-frequency regime,” Opt. Lett. 38(4), 591–593 (2013).
    [Crossref] [PubMed]
  30. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [Crossref] [PubMed]
  31. C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).
    [PubMed]
  32. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [Crossref] [PubMed]

2014 (2)

2013 (5)

2012 (1)

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

2011 (1)

2010 (2)

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-impairment monitoring at 320 Gb/s based on cross phase modulation radio-frequency spectrum analyzer,” IEEE Photonics Technol. Lett. 22(6), 428–430 (2010).
[Crossref]

2009 (4)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1(2), 308–437 (2009).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[Crossref] [PubMed]

2008 (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

2007 (3)

2006 (2)

2004 (1)

C. Dorrer and D. N. Maywar, “RF spectrum analysis of optical signals using Nonlinear Optics,” J. Lightwave Technol. 22(1), 265–274 (2004).
[Crossref]

2003 (2)

C. Dorrer and D. N. Maywar, “Ultra-high bandwidth RF spectrum analyser for optical signals,” Electron. Lett. 39(13), 1004–1005 (2003).
[Crossref]

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

1995 (1)

1994 (1)

B. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

1987 (1)

1986 (1)

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwave Technol. 4(11), 1711–1716 (1986).
[Crossref]

Aditya, S.

Adler, D. C.

Boerner, C.

Bui, L. A.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Bulla, D. A. P.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Caspani, L.

Choi, D. Y.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

Choi, D.-Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwave Technol. 4(11), 1711–1716 (1986).
[Crossref]

Chu, S. T.

Chui, P. C.

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).
[PubMed]

Clerici, M.

Corcoran, B.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-Chip-Based Real-Time Dispersion Monitoring for 640 Gbit/s DPSK Signals,” J. Lightwave Technol. 29(12), 1790–1796 (2011).
[Crossref]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-impairment monitoring at 320 Gb/s based on cross phase modulation radio-frequency spectrum analyzer,” IEEE Photonics Technol. Lett. 22(6), 428–430 (2010).
[Crossref]

Densmore, A.

DiMarcello, F. V.

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

Dorrer, C.

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1(2), 308–437 (2009).
[Crossref]

C. Dorrer and D. N. Maywar, “RF spectrum analysis of optical signals using Nonlinear Optics,” J. Lightwave Technol. 22(1), 265–274 (2004).
[Crossref]

C. Dorrer and D. N. Maywar, “Ultra-high bandwidth RF spectrum analyser for optical signals,” Electron. Lett. 39(13), 1004–1005 (2003).
[Crossref]

Eggleton, B. J.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-Chip-Based Real-Time Dispersion Monitoring for 640 Gbit/s DPSK Signals,” J. Lightwave Technol. 29(12), 1790–1796 (2011).
[Crossref]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-impairment monitoring at 320 Gb/s based on cross phase modulation radio-frequency spectrum analyzer,” IEEE Photonics Technol. Lett. 22(6), 428–430 (2010).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[Crossref] [PubMed]

Emami, H.

Ferber, S.

Ferrera, M.

Fleming, J. W.

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

Foster, M. A.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Friesem, A. A.

Fujimoto, J. G.

Gaeta, A. L.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Ghalmi, S.

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

Goda, K.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

Gu, C.

Heras, C.

Hu, B. B.

Huber, R.

Ilan, B.

Jalali, B.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Janz, S.

Jiang, F.

Kolner, B.

B. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

Kroh, M.

Lam, H. Q.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Lee, K. E. K.

Lichtman, E.

Lim, P. H.

Lipson, M.

Little, B. E.

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Ludwig, R.

Luther-Davies, B.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Ma, R.

Madden, S. J.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Marembert, V.

Marhic, M. E.

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).
[PubMed]

Maywar, D. N.

C. Dorrer and D. N. Maywar, “RF spectrum analysis of optical signals using Nonlinear Optics,” J. Lightwave Technol. 22(1), 265–274 (2004).
[Crossref]

C. Dorrer and D. N. Maywar, “Ultra-high bandwidth RF spectrum analyser for optical signals,” Electron. Lett. 39(13), 1004–1005 (2003).
[Crossref]

Mitchell, A.

Monat, C.

Monberg, E. A.

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

Morandotti, R.

Moss, D. J.

Nicholson, J. W.

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nuss, M. C.

Pasquazi, A.

Peccianti, M.

Pelayo, J.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

Pelusi, M. D.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-Chip-Based Real-Time Dispersion Monitoring for 640 Gbit/s DPSK Signals,” J. Lightwave Technol. 29(12), 1790–1796 (2011).
[Crossref]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-impairment monitoring at 320 Gb/s based on cross phase modulation radio-frequency spectrum analyzer,” IEEE Photonics Technol. Lett. 22(6), 428–430 (2010).
[Crossref]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[Crossref] [PubMed]

Ramachandran, S.

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

Reimer, C.

Salem, R.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
[Crossref]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

Sarkhosh, N.

Schmidt-Langhorst, C.

Schröder, J.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-Chip-Based Real-Time Dispersion Monitoring for 640 Gbit/s DPSK Signals,” J. Lightwave Technol. 29(12), 1790–1796 (2011).
[Crossref]

T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-impairment monitoring at 320 Gb/s based on cross phase modulation radio-frequency spectrum analyzer,” IEEE Photonics Technol. Lett. 22(6), 428–430 (2010).
[Crossref]

Schubert, C.

Sharping, J. E.

Shum, P. P.

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Subías, J.

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Phase noise and linewidth in an InGaAsP DFB laser,” J. Lightwave Technol. 4(11), 1711–1716 (1986).
[Crossref]

Tsia, K. K.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

Turner, A. C.

Van Erps, J.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

Villuendas, F.

Vo, T. D.

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

T. D. Vo, B. Corcoran, J. Schröder, M. D. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon-Chip-Based Real-Time Dispersion Monitoring for 640 Gbit/s DPSK Signals,” J. Lightwave Technol. 29(12), 1790–1796 (2011).
[Crossref]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-impairment monitoring at 320 Gb/s based on cross phase modulation radio-frequency spectrum analyzer,” IEEE Photonics Technol. Lett. 22(6), 428–430 (2010).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[Crossref] [PubMed]

Waarts, R. G.

Walmsley, I. A.

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1(2), 308–437 (2009).
[Crossref]

Weber, H.-G.

Wei, X.

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).
[PubMed]

C. Zhang, X. Wei, and K. K. Y. Wong, “Performance of parametric spectro-temporal analyzer (PASTA),” Opt. Express 21(26), 32111–32122 (2013).
[Crossref] [PubMed]

Wisk, P.

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

Wong, J. H.

Wong, K. K. Y.

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).
[PubMed]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).
[PubMed]

C. Zhang, X. Wei, and K. K. Y. Wong, “Performance of parametric spectro-temporal analyzer (PASTA),” Opt. Express 21(26), 32111–32122 (2013).
[Crossref] [PubMed]

Xu, D. X.

Xu, J.

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).
[PubMed]

Yaffe, H. H.

Yan, M. F.

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

Zhang, C.

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).
[PubMed]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).
[PubMed]

C. Zhang, X. Wei, and K. K. Y. Wong, “Performance of parametric spectro-temporal analyzer (PASTA),” Opt. Express 21(26), 32111–32122 (2013).
[Crossref] [PubMed]

Zhang, X.

Zhou, J.

Adv. Opt. Photonics (2)

I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photonics 1(2), 308–437 (2009).
[Crossref]

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5(3), 274–317 (2013).
[Crossref]

Electron. Lett. (1)

C. Dorrer and D. N. Maywar, “Ultra-high bandwidth RF spectrum analyser for optical signals,” Electron. Lett. 39(13), 1004–1005 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. D. Vo, J. Schröder, B. Corcoran, J. Van Erps, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, M. D. Pelusi, and B. J. Eggleton, “Photonic chip based ultra-fast waveform analysis and optical performance monitoring,” IEEE J. Sel. Top. Quantum Electron. 18(2), 834–846 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-impairment monitoring at 320 Gb/s based on cross phase modulation radio-frequency spectrum analyzer,” IEEE Photonics Technol. Lett. 22(6), 428–430 (2010).
[Crossref]

J. W. Nicholson, S. Ramachandran, S. Ghalmi, E. A. Monberg, F. V. DiMarcello, M. F. Yan, P. Wisk, and J. W. Fleming, “Electrical spectrum measurements of dispersion in higher order mode fibers,” IEEE Photonics Technol. Lett. 15(6), 831–833 (2003).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Nat. Photonics (3)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (7)

F. Jiang, J. H. Wong, H. Q. Lam, J. Zhou, S. Aditya, P. H. Lim, K. E. K. Lee, P. P. Shum, and X. Zhang, “An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter,” Opt. Express 21(14), 16381–16389 (2013).
[Crossref] [PubMed]

C. Zhang, X. Wei, and K. K. Y. Wong, “Performance of parametric spectro-temporal analyzer (PASTA),” Opt. Express 21(26), 32111–32122 (2013).
[Crossref] [PubMed]

M. Ferrera, C. Reimer, A. Pasquazi, M. Peccianti, M. Clerici, L. Caspani, S. T. Chu, B. E. Little, R. Morandotti, and D. J. Moss, “CMOS compatible integrated all-optical radio frequency spectrum analyzer,” Opt. Express 22(18), 21488–21498 (2014).
[Crossref] [PubMed]

C. Heras, J. Subías, J. Pelayo, and F. Villuendas, “High resolution light intensity spectrum analyzer (LISA) based on Brillouin optical filter,” Opt. Express 15(7), 3708–3714 (2007).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17(25), 22983–22991 (2009).
[Crossref] [PubMed]

B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. X. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18(19), 20190–20200 (2010).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[Crossref]

Sci. Rep. (2)

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).
[PubMed]

C. Zhang, J. Xu, P. C. Chui, and K. K. Y. Wong, “Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation,” Sci. Rep. 3, 2064 (2013).
[PubMed]

Other (4)

C. C. K. Chan, Optical performance monitoring: advanced techniques for next-generation photonic networks (Academic, 2010).

Z. Henry and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, 1994).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

I. A. Glover, S. R. Pennock, and P. R. Shepherd, “Mixers: theory and design,” in Microwave Devices, Circuits and Subsystems for Communications Engineering (John Wiley, 2005), pp. 311–376.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The approximation of the XPM conversion process. (a) The ratio of the sum of other orders Bessel functions to the first order. (b) The first order Bessel function is fitted to a linear function with slope k = 0.5. (c) The error between first order Bessel function and the linear function.

Fig. 2
Fig. 2

(a) Temporal ray diagram of temporal focusing mechanism. Φf: the focal GDD. (b) The schematic illustration of the real-time RF spectrum analyzer. Red-solid line: the temporal intensity; red-dashed line: the phase; black-solid line: the optical spectrum. (c) The detailed experimental setup of PASTA system. TLS: tunable laser source; WDMC: wavelength division multiplexing coupler; PD: photo-detector; BPF: band-pass filter.

Fig. 3
Fig. 3

Schematic of the bandwidth measurement. (a) The spectrum of the XPM process between the beating pump signals and the probe signal, and the generated sideband is filtered out by a rectangular filter (green line). (b) The filtered spectrum captured by the PASTA in the temporal domain. It is noted that, the blue line at zero point is part of the probe signal, which is located at the edge of the filter, and can be used as a temporal reference.

Fig. 4
Fig. 4

The observation bandwidth of the RF spectrum analyzer. (a) Based on the conventional OSA. (b) Based on the PASTA.

Fig. 5
Fig. 5

Performance of the real-time RF spectrum analyzer. (a) Resolution performance. Black-solid line: the output pulse envelop with single frequency at 500 GHz; red-dashed line: the output pulse envelop with two frequencies at 500 GHz and 503.8 GHz. (b) The two consecutive measured RF spectra with the frame rate of 91 MHz. (c) The dynamic range performance of the RF spectrum analyzer.

Fig. 6
Fig. 6

Characterization of the pulses at ultrahigh repetition rate. (a) The RF spectrum of a 10-GHz pulse source. (b)&(c) The experimental measured & simulated RF spectrum of 160-GHz pulse trains.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F( ω )= | E(t)exp(iωt)dt | 2
S( ω )= | I(t)exp(iωt)dt | 2
E probe out ( t )=exp{ iM[ 1+cos( 2πΩt ) ] }exp( i ω probe t ) = n= i n J n (M)exp[ i( ω probe +2nπΩ)t+iM ]
E probe out ( t )=[ 1+ 1 2 iMexp(i2πΩ)t)+ 1 2 iMexp(i2πΩt) ]exp(i ω probe t)
I probe out ( ω )=δ( ω ω probe )+ (γLP) 2 δ( ω ω probe +2πΩ )+ (γLP) 2 δ( ω ω probe 2πΩ )
I PASTA out ( τ )= I pulse ( τ )+ (γLP) 2 I pulse ( τ2π Φ f Ω )+ (γLP) 2 I pulse ( τ+2π Φ f Ω )
I PASTA out ( τ )= (γLP) 2 I pulse ( τ2π Φ f Ω )
τ=2π Φ f Ω

Metrics