Abstract

A high-performance temperature sensor based on mode-coupling principle is proposed using a selectively filled, solid-core photonic crystal fiber with a central air-bore. The fibers are fabricated using the “stack-and-draw” method, with a micro scale central bore deliberately kept during the drawing procedure. The addition of the central air-bore enhances the mode-coupling efficiency between the fundamental core mode and modes in the high-index liquid-filled holes in the fiber cladding, therefore, the fiber can be used for a novel sensing architecture, when cladding holes are selectively filled with temperature sensitive liquids. Based on this concept, numerical analyses are accomplished using finite element method, showing that this fiber-based temperature sensor possesses high sensitivity of −6.02 nm/°C, with a resolution of 3.32 × 10−3 °C, in the temperature range from −80 to 90 °C. The selective hole-filling is verified by a multi-step infiltration technique. A particularly designed probe with improved sensitivity and manipulation is also proposed for this system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber

Zhilin Xu, Junlong Lim, Dora Juan Juan Hu, Qizhen Sun, Rebecca Yen-Ni Wong, Kun Li, Meng Jiang, and Perry Ping Shum
Opt. Express 24(2) 1699-1707 (2016)

Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber

Yang Peng, Jing Hou, Zhihe Huang, and Qisheng Lu
Appl. Opt. 51(26) 6361-6367 (2012)

Control and design of fiber birefringence characteristics based on selective-filled hybrid photonic crystal fibers

Tingting Han, Yan-ge Liu, Zhi Wang, Junqi Guo, Zhifang Wu, Mingming Luo, Shuo Li, Jing Wang, and Wei Wang
Opt. Express 22(12) 15002-15016 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [Crossref] [PubMed]
  2. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
    [Crossref] [PubMed]
  3. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  4. P. Russell, “Photonic-crystal fibres,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  5. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28(3), 182–184 (2003).
    [Crossref] [PubMed]
  6. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
    [Crossref] [PubMed]
  7. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12(10), 2027–2032 (2004).
    [Crossref] [PubMed]
  8. Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photonics Technol. Lett. 16(6), 1516–1518 (2004).
    [Crossref]
  9. F. Gérôme, J. L. Auguste, and J. M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett. 29(23), 2725–2727 (2004).
    [Crossref] [PubMed]
  10. O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. Russell, “Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
    [Crossref] [PubMed]
  11. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  12. S. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13(9), 3454–3459 (2005).
    [Crossref] [PubMed]
  13. C. M. B. Cordeiro, E. M. Dos Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
    [Crossref] [PubMed]
  14. V. P. Minkovich, D. Monzón-Hernández, J. Villatoro, and G. Badenes, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Opt. Express 14(18), 8413–8418 (2006).
    [Crossref] [PubMed]
  15. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
    [Crossref] [PubMed]
  16. J. N. Dash and R. Jha, “Inline microcavity-based PCF interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 27(12), 1325–1328 (2015).
    [Crossref]
  17. M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, H. Z. Yang, and H. Ahmad, “PCF-cavity FBG Fabry-Perot resonator for simultaneous measurement of pressure and temperature,” IEEE Sens. J. 15(12), 6921–6925 (2015).
    [Crossref]
  18. X. J. Yin, W. Y. Wang, Y. Q. Yu, Y. F. Geng, and X. J. Li, “Temperature sensor based on quantum dots solution encapsulated in photonic crystal fiber,” IEEE Sens. J. 15(5), 2810–2813 (2015).
  19. D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
    [Crossref]
  20. Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).
  21. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
    [Crossref] [PubMed]
  22. W. H. Shi, C. J. You, and J. Wu, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 224221 (2015).
  23. H. Ademgil, S. Haxha, T. Gorman, and F. Abdelmalek, “Bending effects on highly birefringent photonic crystal fibers with low chromatic dispersion and low confinement losses,” J. Lightwave Technol. 27(5), 559–567 (2009).
    [Crossref]
  24. K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
    [Crossref]
  25. L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
    [Crossref]

2015 (4)

J. N. Dash and R. Jha, “Inline microcavity-based PCF interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 27(12), 1325–1328 (2015).
[Crossref]

M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, H. Z. Yang, and H. Ahmad, “PCF-cavity FBG Fabry-Perot resonator for simultaneous measurement of pressure and temperature,” IEEE Sens. J. 15(12), 6921–6925 (2015).
[Crossref]

X. J. Yin, W. Y. Wang, Y. Q. Yu, Y. F. Geng, and X. J. Li, “Temperature sensor based on quantum dots solution encapsulated in photonic crystal fiber,” IEEE Sens. J. 15(5), 2810–2813 (2015).

W. H. Shi, C. J. You, and J. Wu, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 224221 (2015).

2014 (1)

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).

2012 (2)

D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. Russell, “Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[Crossref] [PubMed]

2009 (1)

2007 (1)

2006 (6)

2005 (2)

2004 (4)

2003 (4)

Abdelmalek, F.

Ademgil, H.

Ahmad, H.

M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, H. Z. Yang, and H. Ahmad, “PCF-cavity FBG Fabry-Perot resonator for simultaneous measurement of pressure and temperature,” IEEE Sens. J. 15(12), 6921–6925 (2015).
[Crossref]

Ali, M. M.

M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, H. Z. Yang, and H. Ahmad, “PCF-cavity FBG Fabry-Perot resonator for simultaneous measurement of pressure and temperature,” IEEE Sens. J. 15(12), 6921–6925 (2015).
[Crossref]

An, L.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photonics Technol. Lett. 16(6), 1516–1518 (2004).
[Crossref]

Auguste, J. L.

Badenes, G.

Bang, O.

Bird, D. M.

Birks, T.

Blondy, J. M.

Breuer, E.

Brito Cruz, C. H.

Chen, Z.

Cordeiro, C. M. B.

Cui, Y.

D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Dash, J. N.

J. N. Dash and R. Jha, “Inline microcavity-based PCF interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 27(12), 1325–1328 (2015).
[Crossref]

de Matos, C. J. S.

Demokan, M. S.

Dos Santos, E. M.

Dufva, M.

Euser, T. G.

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. Russell, “Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[Crossref] [PubMed]

Fan, C. C.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photonics Technol. Lett. 16(6), 1516–1518 (2004).
[Crossref]

Ferreiira, D. S.

Garbos, M. K.

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. Russell, “Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[Crossref] [PubMed]

Geng, Y. F.

X. J. Yin, W. Y. Wang, Y. Q. Yu, Y. F. Geng, and X. J. Li, “Temperature sensor based on quantum dots solution encapsulated in photonic crystal fiber,” IEEE Sens. J. 15(5), 2810–2813 (2015).

George, A. K.

Gérôme, F.

Gorman, T.

Gunawardena, D. S.

M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, H. Z. Yang, and H. Ahmad, “PCF-cavity FBG Fabry-Perot resonator for simultaneous measurement of pressure and temperature,” IEEE Sens. J. 15(12), 6921–6925 (2015).
[Crossref]

Hao, C. J.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).

Hasegawa, T.

Hassani, A.

Haxha, S.

Hedley, T. D.

Høiby, P. E.

Hu, D. J.

D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Humbert, G.

Islam, M. R.

M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, H. Z. Yang, and H. Ahmad, “PCF-cavity FBG Fabry-Perot resonator for simultaneous measurement of pressure and temperature,” IEEE Sens. J. 15(12), 6921–6925 (2015).
[Crossref]

Jensen, J. B.

Jha, R.

J. N. Dash and R. Jha, “Inline microcavity-based PCF interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 27(12), 1325–1328 (2015).
[Crossref]

Jin, W.

Knight, J.

Knight, J. C.

Konorov, S.

Kopf, D.

Koshiba, M.

Lederer, M.

Leon-Saval, S.

Li, X. J.

X. J. Yin, W. Y. Wang, Y. Q. Yu, Y. F. Geng, and X. J. Li, “Temperature sensor based on quantum dots solution encapsulated in photonic crystal fiber,” IEEE Sens. J. 15(5), 2810–2813 (2015).

Lim, J. L.

D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Lim, K. S.

M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, H. Z. Yang, and H. Ahmad, “PCF-cavity FBG Fabry-Perot resonator for simultaneous measurement of pressure and temperature,” IEEE Sens. J. 15(12), 6921–6925 (2015).
[Crossref]

Lu, Y.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).

Luan, F.

Milenko, K.

D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Minkovich, V. P.

Monzón-Hernández, D.

Nelson, J. S.

Ni, Y.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photonics Technol. Lett. 16(6), 1516–1518 (2004).
[Crossref]

Pearce, G. J.

Pedersen, L. H.

Peng, J. D.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photonics Technol. Lett. 16(6), 1516–1518 (2004).
[Crossref]

Rindorf, L.

Russell, P.

P. Russell, “Photonic-crystal fibres,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. S.

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. Russell, “Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[Crossref] [PubMed]

Russell, P. St. J.

Saitoh, K.

Sasaoka, E.

Scalora, M.

Schmidt, O. A.

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. Russell, “Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[Crossref] [PubMed]

Shi, W. H.

W. H. Shi, C. J. You, and J. Wu, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 224221 (2015).

Shum, P. P.

D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Skorobogatiy, M.

St J Russell, P.

Stifter, D.

Tajima, K.

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

Tsujikawa, K.

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

Villatoro, J.

Wadsworth, W.

Wang, M. T.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).

Wang, W. Y.

X. J. Yin, W. Y. Wang, Y. Q. Yu, Y. F. Geng, and X. J. Li, “Temperature sensor based on quantum dots solution encapsulated in photonic crystal fiber,” IEEE Sens. J. 15(5), 2810–2813 (2015).

Wang, Y.

Wang, Y. P.

Wang, Y. X.

D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Wiesauer, K.

Windeler, R. S.

Wolinski, T.

D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Wu, J.

W. H. Shi, C. J. You, and J. Wu, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 224221 (2015).

Xiao, L. M.

Yang, H. Z.

M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, H. Z. Yang, and H. Ahmad, “PCF-cavity FBG Fabry-Perot resonator for simultaneous measurement of pressure and temperature,” IEEE Sens. J. 15(12), 6921–6925 (2015).
[Crossref]

Yao, J. Q.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).

Yin, X. J.

X. J. Yin, W. Y. Wang, Y. Q. Yu, Y. F. Geng, and X. J. Li, “Temperature sensor based on quantum dots solution encapsulated in photonic crystal fiber,” IEEE Sens. J. 15(5), 2810–2813 (2015).

You, C. J.

W. H. Shi, C. J. You, and J. Wu, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 224221 (2015).

Yu, Y. Q.

X. J. Yin, W. Y. Wang, Y. Q. Yu, Y. F. Geng, and X. J. Li, “Temperature sensor based on quantum dots solution encapsulated in photonic crystal fiber,” IEEE Sens. J. 15(5), 2810–2813 (2015).

Zhang, L.

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photonics Technol. Lett. 16(6), 1516–1518 (2004).
[Crossref]

Zhao, C. L.

Zhao, Y.

Zhao, Z. Q.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).

Zheltikov, A.

Zhou, J.

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

IEEE Photonics J. (2)

D. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. X. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6CHBT,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).

IEEE Photonics Technol. Lett. (2)

J. N. Dash and R. Jha, “Inline microcavity-based PCF interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 27(12), 1325–1328 (2015).
[Crossref]

Y. Ni, L. Zhang, L. An, J. D. Peng, and C. C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photonics Technol. Lett. 16(6), 1516–1518 (2004).
[Crossref]

IEEE Sens. J. (2)

M. M. Ali, M. R. Islam, K. S. Lim, D. S. Gunawardena, H. Z. Yang, and H. Ahmad, “PCF-cavity FBG Fabry-Perot resonator for simultaneous measurement of pressure and temperature,” IEEE Sens. J. 15(12), 6921–6925 (2015).
[Crossref]

X. J. Yin, W. Y. Wang, Y. Q. Yu, Y. F. Geng, and X. J. Li, “Temperature sensor based on quantum dots solution encapsulated in photonic crystal fiber,” IEEE Sens. J. 15(5), 2810–2813 (2015).

J. Lightwave Technol. (3)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[Crossref] [PubMed]

Opt. Express (8)

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843–852 (2003).
[Crossref] [PubMed]

K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12(10), 2027–2032 (2004).
[Crossref] [PubMed]

S. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13(9), 3454–3459 (2005).
[Crossref] [PubMed]

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
[Crossref] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006).
[Crossref] [PubMed]

C. M. B. Cordeiro, E. M. Dos Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
[Crossref] [PubMed]

V. P. Minkovich, D. Monzón-Hernández, J. Villatoro, and G. Badenes, “Microstructured optical fiber coated with thin films for gas and chemical sensing,” Opt. Express 14(18), 8413–8418 (2006).
[Crossref] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

K. Tsujikawa, K. Tajima, and J. Zhou, “Intrinsic loss of optical fibers,” Opt. Fiber Technol. 11(4), 319–331 (2005).
[Crossref]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. Russell, “Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 109(2), 024502 (2012).
[Crossref] [PubMed]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Wuli Xuebao (1)

W. H. Shi, C. J. You, and J. Wu, “D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling,” Wuli Xuebao 64(22), 224221 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Multi-step “stack and draw” procedure for capillary, rod, cane and fiber drawing

Fig. 2
Fig. 2

SEM photographs of the fabricated fiber (a) and enlarged cladding area (b). (c) A simplified model for finite element calculation. Note that the six grey holes represent the ones filled with toluene. A PML (yellow region) was added to avoid fictitious reflections.

Fig. 3
Fig. 3

Normalized electric field distribution of supported mode profiles in the solid-core PCF. (a) The fundamental core mode. Note that the air-bore in the middle of the core contributes a central null of the electric field. (b) Normalized electric field distribution of the liquid-core LP01 modes and (c) the liquid-core LP11 modes (TM01) in fiber cladding. (d) Field distributions of the hybrid mode when mode coupling occurs.

Fig. 4
Fig. 4

(a) Calculated effective refractive indices of the fundamental core mode (red) and the liquid-core LP01 mode (green) in the wavelength range 0.4 to 2.0 μm. (b) Calculated effective refractive indices of the fundamental core mode (red) and four degenerated liquid-core LP11 modes between 0.86 and 0.92 μm, within which region the mode coupling happens. The confinement loss spectrum of the fundamental core mode is plotted in the same figure (magenta, right axis).

Fig. 5
Fig. 5

(a) The confinement loss of PCF1 at different temperatures. At couling wavelengths the confinement loss has an obvious increase. The coupling wavelength of PCF1 and PCF2 and their fitted curves when temperature ranges from −80 to 90 °C are shown in (b), −80 to 0 °C in (c) and 0 to 90 °C in (d).

Fig. 6
Fig. 6

The design of the structure of temperature sensing probe that enables the separation between signals of the fundamental mode and cladding modes.

Fig. 7
Fig. 7

Schematic diagram of the selective filling process.

Fig. 8
Fig. 8

Microscope image of PCF cross section. (a) Most holes were firstly sealed with UV harden glue except one in the right-bottom corner. (b) Selective filling of that one hole with toluene.

Tables (1)

Tables Icon

Table 1 Structural parameters of solid-core PCFs with a central bore.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n silica (λ)= 1+ B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 + B 3 λ 2 λ 2 C 3
n toluene (λ)=1.474775+ 6990.31 λ 2 + 2.1776× 10 8 λ 4 α(t20.15)
α loss =8.686× 2π λ' ×Im[ n eff ]× 10 6

Metrics