Abstract

We investigate the constellation design and symbol error rate (SER) of set-partitioned (SP) quadrature amplitude modulation (QAM) formats. Based on the SER analysis, we derive the adaptive bit and power loading algorithm for SP QAM based intensity-modulation direct-detection (IM/DD) orthogonal frequency division multiplexing (OFDM). We experimentally show that the proposed system significantly outperforms the conventional adaptively-loaded IM/DD OFDM and can increase the data rate from 36 Gbit/s to 42 Gbit/s in the presence of severe dispersion-induced spectral nulls after 40-km single-mode fiber. It is also shown that the adaptive algorithm greatly enhances the tolerance to fiber nonlinearity and allows for more power budget.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
DC-Biased Optical OFDM for IM/DD Passive Optical Network Systems

M. F. Sanya, L. Djogbe, A. Vianou, and C. Aupetit-Berthelemot
J. Opt. Commun. Netw. 7(4) 205-214 (2015)

An improved scheme for Flip-OFDM based on Hartley transform in short-range IM/DD systems

Ji Zhou, Yaojun Qiao, Zhuo Cai, and Yuefeng Ji
Opt. Express 22(17) 20748-20756 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Q. Yang, Z. He, Z. Yang, S. Yu, X. Yi, and W. Shieh, “Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing,” Opt. Express 20(3), 2379–2385 (2012).
    [Crossref] [PubMed]
  2. J. Zhao, “DFT-based offset-QAM OFDM for optical communications,” Opt. Express 22(1), 1114–1126 (2014).
    [Crossref] [PubMed]
  3. P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
    [Crossref]
  4. E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive loading algorithms for IMDD optical OFDM PON systems using directly modulated lasers,” J. Opt. Commun. Netw. 4(10), 769–778 (2012).
    [Crossref]
  5. B. Cardiff, M. F. Flanagan, F. Smyth, L. P. Barry, and A. D. Fagan, “On bit and power loading for OFDM over SI-POF,” J. Lightwave Technol. 29(10), 1547–1554 (2011).
    [Crossref]
  6. D. Bykhovsky and S. Arnon, “An experimental comparison of different bit-and-power allocation algorithms for DCO-OFDM,” J. Lightwave Technol. 32(8), 1559–1564 (2014).
    [Crossref]
  7. Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
    [Crossref]
  8. M. Karlsson and E. Agrell, “Which is the most power-efficient modulation format in optical links?” Opt. Express 17(13), 10814–10819 (2009).
    [Crossref] [PubMed]
  9. I. Djordjevic, H. G. Batshon, L. Xu, and T. Wang, “Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission,” Opt. Express 19(2), 876–882 (2011).
    [Crossref] [PubMed]
  10. H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), paper W1I.2.
    [Crossref]
  11. R. R. Muller, J. Renaudier, M. A. Mestre, H. Mardoyan, A. Konczykowska, F. Jorge, B. Duval, and J. Y. Dupuy, “Multi-dimension coded PAM4 signaling for 100Gb/s short reach transceivers,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), Paper Th1G.4.
  12. J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photonics Technol. Lett. 23(9), 594–596 (2011).
    [Crossref]

2016 (1)

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

2014 (2)

2012 (2)

2011 (3)

2009 (1)

1995 (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

Agrell, E.

Arnon, S.

Barry, L. P.

Batshon, H. G.

I. Djordjevic, H. G. Batshon, L. Xu, and T. Wang, “Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission,” Opt. Express 19(2), 876–882 (2011).
[Crossref] [PubMed]

H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), paper W1I.2.
[Crossref]

Bingham, J. A. C.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

Bolshtyansky, M.

H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), paper W1I.2.
[Crossref]

Bykhovsky, D.

Cardiff, B.

Chen, H.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Chen, M.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

Davidson, C. R.

H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), paper W1I.2.
[Crossref]

Djordjevic, I.

Ellis, A. D.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photonics Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

Fagan, A. D.

Flanagan, M. F.

Foursa, D. G.

H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), paper W1I.2.
[Crossref]

Giacoumidis, E.

Gunning, P.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photonics Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

He, Z.

Ibrahim, S. K.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photonics Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

Karlsson, M.

Kavatzikidis, A.

Mazurczyk, M.

H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), paper W1I.2.
[Crossref]

Pilipetskii, A.

H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), paper W1I.2.
[Crossref]

Rafique, D.

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photonics Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

Shieh, W.

Smyth, F.

Tang, J. M.

Tomkos, I.

Tsokanos, A.

Wang, T.

Xie, S.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Xu, L.

Yang, Q.

Yang, S.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Yang, Z.

Yi, X.

Yu, S.

Yu, Z.

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

Zhang, H.

H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), paper W1I.2.
[Crossref]

Zhao, J.

J. Zhao, “DFT-based offset-QAM OFDM for optical communications,” Opt. Express 22(1), 1114–1126 (2014).
[Crossref] [PubMed]

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photonics Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Yu, H. Chen, M. Chen, S. Yang, and S. Xie, “Bandwidth improvement using adaptive loading scheme in optical direct-detection OFDM,” IEEE J. Quantum Electron. 52(10), 8000106 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Zhao, S. K. Ibrahim, D. Rafique, P. Gunning, and A. D. Ellis, “Symbol synchronization exploiting the symmetric property in optical fast OFDM,” IEEE Photonics Technol. Lett. 23(9), 594–596 (2011).
[Crossref]

IEEE Trans. Commun. (1)

P. S. Chow, J. M. Cioffi, and J. A. C. Bingham, “A practical discrete multi-tone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(2), 773–776 (1995).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Express (4)

Other (2)

H. Zhang, C. R. Davidson, H. G. Batshon, M. Mazurczyk, M. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “DP-16QAM based coded modulation transmission in C+L band system at transoceanic distance,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), paper W1I.2.
[Crossref]

R. R. Muller, J. Renaudier, M. A. Mestre, H. Mardoyan, A. Konczykowska, F. Jorge, B. Duval, and J. Y. Dupuy, “Multi-dimension coded PAM4 signaling for 100Gb/s short reach transceivers,” in Technical Digest of Optical Fiber Communication Conference (OFC) (2016), Paper Th1G.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Constellation of SP-2QAM, SP-8QAM, SP-32QAM, SP-128QAM, SP-512QAM, and SP-2048QAM. In each format, circled points in symbol #2 represent all possible constellation points when the circled point in symbol #1 is selected.

Fig. 2
Fig. 2

Constellation of SP-128QAM, which is divided into two subgroups represented by solid and empty circles, respectively. The minimal distance between the 16 points in the constellation of either symbol #1 or symbol #2 is assumed to be 2.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

(a) BER performance versus signal data rate at back-to-back when the signal formats are 8QAM, 16QAM, adaptively-loaded conventional QAM, adaptively-loaded SP QAM, and SP QAM with the finer SE granularity. The received signal power is −3 dBm. (b) BER versus the received power for different formats when the data rate is 40.2 Gbit/s.

Fig. 5
Fig. 5

(a) BER performance versus signal data rate after 40 km when the signal formats are 8QAM, 16QAM, adaptively-loaded conventional QAM, adaptively-loaded SP QAM, and SP QAM with the finer SE granularity. (b) SE versus subcarrier index for adaptively-loaded conventional QAM, SP QAM, and SP QAM with the finer SE granularity at 40.2 Gbit/s. The dashed line represents the estimated SNR profile ( = SNR (dB) /3). In (a) and (b), the received signal power is −3 dBm and the signal launch power into the fiber is 10 dBm.

Fig. 6
Fig. 6

BER versus received power after 40 km when the data rate is (a) 30.7 Gbit/s and (b) 40.2 Gbit/s. The signal launch power is 10 dBm and the MZM bias is 2.4 V.

Fig. 7
Fig. 7

(a) BER versus the launch power into the 40-km SMF when channel estimation and bit loading are performed for each power (circles) or are fixed using the SNR profile obtained at 10-dBm launch power (diamonds). (b) SE versus subcarrier index when the bits are loaded using the SNR profiles estimated at 10-dBm and 15-dBm launch power. Dashed and dotted lines represent the SNR profiles ( = SNR (dB) / 3). In (a) and (b), the data rate is 30.7 Gbit/s.

Fig. 8
Fig. 8

(a) BER versus the MZM bias when the channel estimation and bit loading are performed for each bias (circles) or are fixed using the SNR profile obtained at 2.4-V bias (diamonds). (b) SE versus subcarrier index when the bits are loaded using the SNR profiles estimated at 1.8-V and 3-V bias. Dashed and dotted lines represent the SNR profiles ( = SNR (dB) / 3). In (a) and (b), the signal data rate is 30.7 Gbit/s.

Tables (1)

Tables Icon

Table 1 Upper bound of SER for different SP QAM formats

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

SE R =KQ( d min 2 N 0 )
SER4×(1 1 2 m/2 )Q( 3 2 m 1 SNR )<4×Q( 3 2 m 1 SNR )
SNR= E s / N 0
SER<K×Q( 3×2 2 m+1/2 1 SNR )
m i = log 2 (1+ 3×2×SN R i ( Q 1 (SE R preset /K)) 2 )0.5
m i =round( m i +1/2)1/2
m i = log 2 (1+ 3×2×SN R i ( Q 1 (SE R preset /K)) 2 γ )0.5
SN R i = | E( r i * s i ) | 2 E( | r i | 2 )E( | s i | 2 )| E( r i * s i ) |