Abstract

The lasing characteristics of hybrid plasmonic AlGaAs/GaAs multiple quantum well (MQW) nanowire (NW) lasers beyond diffraction limit have been investigated by 3D finite-difference time-domain simulations. The results show that the hybrid plasmonic MQW NW has lower threshold gain over a broad diameter range in comparison with its photonic counterpart. Beyond the diffraction limit, the hybrid plasmonic MQW NW has a lowest threshold gain of 788 cm−1 at a diameter of 130 nm, and a cutoff diameter of 80 nm, half that of the photonic lasers. In comparison with the hybrid plasmonic core-shell NWs, the hybrid plasmonic MQW NWs exhibit significantly lower threshold gain, higher Purcell factor, and smaller cutoff diameter, which are attributed to the superior overlap between the hybrid plasmonic modes and gain medium, as well as a stronger optical confinement due to the grating-like effect of MQW structures. Moreover, the hybrid plasmonic MQW NW has a lower threshold gain than that of the core-shell NW over a broad wavelength range. The hybrid plasmonic MQW NW structure is promising for ultrasmall and low-consumption near-infrared nanolasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Carrier saturation in multiple quantum well metallo-dielectric semiconductor nanolaser: Is bulk material a better choice for gain media?

Felipe Vallini, Qing Gu, Michael Kats, Yeshaiahu Fainman, and Newton C. Frateschi
Opt. Express 21(22) 25985-25998 (2013)

Nanoscale active hybrid plasmonic laser with a metal-clad metal–insulator–semiconductor square resonator

Zengli Huang, Jianfeng Wang, Zhenghui Liu, Gengzhao Xu, Bing Cao, Chinhua Wang, and Ke Xu
J. Opt. Soc. Am. B 31(7) 1422-1429 (2014)

Semiconductor nanowire lasers

Yaoguang Ma, Xin Guo, Xiaoqin Wu, Lun Dai, and Limin Tong
Adv. Opt. Photon. 5(3) 216-273 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor laser,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
    [Crossref]
  2. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
    [Crossref] [PubMed]
  3. J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
    [Crossref]
  4. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  5. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [Crossref] [PubMed]
  6. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
    [Crossref] [PubMed]
  7. T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
    [Crossref] [PubMed]
  8. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
    [Crossref]
  9. A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
    [Crossref]
  10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  11. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  12. X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, and T. C. Sum, “Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein-Moss Effect,” Nano Lett. 13(11), 5336–5343 (2013).
    [Crossref] [PubMed]
  13. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
    [Crossref] [PubMed]
  14. S. Wuestner, J. M. Hamm, A. Pusch, and O. Hess, “Plasmonic leaky-mode lasing in active semiconductor nanowires,” Laser Photonics Rev. 9(2), 256–262 (2015).
    [Crossref]
  15. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
    [Crossref]
  16. J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, and Y. Arakawa, “Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser,” ACS Photonics 2(1), 165–171 (2015).
    [Crossref]
  17. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  18. J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9(8), 501–505 (2015).
    [Crossref]
  19. F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
    [Crossref] [PubMed]
  20. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
    [Crossref]
  21. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
    [Crossref]
  22. D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
    [Crossref] [PubMed]
  23. C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
    [Crossref] [PubMed]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  25. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
    [Crossref] [PubMed]
  26. D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
    [Crossref]
  27. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi, B Basic Res. 247(4), 774–788 (2010).
  28. D. Li and C. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
    [Crossref]
  29. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
  30. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
    [Crossref]
  31. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  32. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [Crossref] [PubMed]
  33. S. W. Chang, T. R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010).
    [Crossref] [PubMed]
  34. R. C. Miller, D. A. Kleinman, A. C. Gossard, and O. Munteanu, “Biexcitons in GaAs quantum wells,” Phys. Rev. B 25(10), 6545–6547 (1982).
    [Crossref]
  35. R. C. Miller, D. A. Kleinman, W. T. Tsang, and A. C. Gossard, “Observation of the excited level of excitions in GaAs quantum wells,” Phys. Rev. B 24(2), 1134–1136 (1981).
    [Crossref]

2016 (1)

D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
[Crossref] [PubMed]

2015 (4)

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9(8), 501–505 (2015).
[Crossref]

S. Wuestner, J. M. Hamm, A. Pusch, and O. Hess, “Plasmonic leaky-mode lasing in active semiconductor nanowires,” Laser Photonics Rev. 9(2), 256–262 (2015).
[Crossref]

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, and Y. Arakawa, “Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser,” ACS Photonics 2(1), 165–171 (2015).
[Crossref]

2014 (2)

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

2013 (2)

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, and T. C. Sum, “Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein-Moss Effect,” Nano Lett. 13(11), 5336–5343 (2013).
[Crossref] [PubMed]

2012 (1)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

2011 (1)

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

2010 (3)

D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
[Crossref]

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi, B Basic Res. 247(4), 774–788 (2010).

S. W. Chang, T. R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010).
[Crossref] [PubMed]

2009 (3)

D. Li and C. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
[Crossref]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

2008 (4)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
[Crossref] [PubMed]

2006 (1)

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[Crossref]

2005 (1)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

2004 (1)

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
[Crossref]

2003 (1)

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

1988 (1)

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor laser,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

1982 (3)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

R. C. Miller, D. A. Kleinman, A. C. Gossard, and O. Munteanu, “Biexcitons in GaAs quantum wells,” Phys. Rev. B 25(10), 6545–6547 (1982).
[Crossref]

1981 (1)

R. C. Miller, D. A. Kleinman, W. T. Tsang, and A. C. Gossard, “Observation of the excited level of excitions in GaAs quantum wells,” Phys. Rev. B 24(2), 1134–1136 (1981).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Agarwal, R.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Arakawa, Y.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, and Y. Arakawa, “Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser,” ACS Photonics 2(1), 165–171 (2015).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9(8), 501–505 (2015).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Au, F. C. K.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
[Crossref]

Bartal, G.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Boland, J. L.

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

Chang, S. W.

Chen, W.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
[Crossref]

Chin, A. H.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chuang, S. L.

Conesa-Boj, S.

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Davies, C. L.

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

Ding, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Dong, Y.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
[Crossref]

Duan, X.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Fong, C. F.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, and Y. Arakawa, “Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser,” ACS Photonics 2(1), 165–171 (2015).
[Crossref]

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gossard, A. C.

R. C. Miller, D. A. Kleinman, A. C. Gossard, and O. Munteanu, “Biexcitons in GaAs quantum wells,” Phys. Rev. B 25(10), 6545–6547 (1982).
[Crossref]

R. C. Miller, D. A. Kleinman, W. T. Tsang, and A. C. Gossard, “Observation of the excited level of excitions in GaAs quantum wells,” Phys. Rev. B 24(2), 1134–1136 (1981).
[Crossref]

Gradecak, S.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Guo, Y.

D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
[Crossref] [PubMed]

Hamm, J. M.

S. Wuestner, J. M. Hamm, A. Pusch, and O. Hess, “Plasmonic leaky-mode lasing in active semiconductor nanowires,” Laser Photonics Rev. 9(2), 256–262 (2015).
[Crossref]

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Herz, L. M.

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

Hess, O.

S. Wuestner, J. M. Hamm, A. Pusch, and O. Hess, “Plasmonic leaky-mode lasing in active semiconductor nanowires,” Laser Photonics Rev. 9(2), 256–262 (2015).
[Crossref]

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Ho, J.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, and Y. Arakawa, “Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser,” ACS Photonics 2(1), 165–171 (2015).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9(8), 501–505 (2015).
[Crossref]

Huang, Y.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Iga, K.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor laser,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

Iwamoto, S.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9(8), 501–505 (2015).
[Crossref]

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, and Y. Arakawa, “Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser,” ACS Photonics 2(1), 165–171 (2015).
[Crossref]

Jagadish, C.

D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
[Crossref] [PubMed]

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Jiang, N.

D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
[Crossref] [PubMed]

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Jiang, Y.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnston, M. B.

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

Kako, S.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9(8), 501–505 (2015).
[Crossref]

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Kinoshita, S.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor laser,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

Kleinman, D. A.

R. C. Miller, D. A. Kleinman, A. C. Gossard, and O. Munteanu, “Biexcitons in GaAs quantum wells,” Phys. Rev. B 25(10), 6545–6547 (1982).
[Crossref]

R. C. Miller, D. A. Kleinman, W. T. Tsang, and A. C. Gossard, “Observation of the excited level of excitions in GaAs quantum wells,” Phys. Rev. B 24(2), 1134–1136 (1981).
[Crossref]

Koyama, F.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor laser,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Lee, S. T.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
[Crossref]

Li, D.

D. Li and C. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
[Crossref]

Li, D. B.

D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
[Crossref]

Li, G.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

Li, Y.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Lieber, C. M.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

Lifshitz, Y.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
[Crossref]

Lin, T. R.

Lipson, M.

Liu, X.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, and T. C. Sum, “Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein-Moss Effect,” Nano Lett. 13(11), 5336–5343 (2013).
[Crossref] [PubMed]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Ma, R.-M.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maslov, A. V.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[Crossref]

Meng, X. M.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
[Crossref]

Meyyappan, M.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[Crossref]

Miller, R. C.

R. C. Miller, D. A. Kleinman, A. C. Gossard, and O. Munteanu, “Biexcitons in GaAs quantum wells,” Phys. Rev. B 25(10), 6545–6547 (1982).
[Crossref]

R. C. Miller, D. A. Kleinman, W. T. Tsang, and A. C. Gossard, “Observation of the excited level of excitions in GaAs quantum wells,” Phys. Rev. B 24(2), 1134–1136 (1981).
[Crossref]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Mokkapati, S.

D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Munteanu, O.

R. C. Miller, D. A. Kleinman, A. C. Gossard, and O. Munteanu, “Biexcitons in GaAs quantum wells,” Phys. Rev. B 25(10), 6545–6547 (1982).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Ning, C.

D. Li and C. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
[Crossref]

Ning, C. Z.

D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
[Crossref]

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi, B Basic Res. 247(4), 774–788 (2010).

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[Crossref]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Ota, Y.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9(8), 501–505 (2015).
[Crossref]

Oulton, R. F.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Page, A. F.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Painter, O.

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
[Crossref] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Park, H.-G.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Parkinson, P.

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Pickering, T.

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Preston, K.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Pusch, A.

S. Wuestner, J. M. Hamm, A. Pusch, and O. Hess, “Plasmonic leaky-mode lasing in active semiconductor nanowires,” Laser Photonics Rev. 9(2), 256–262 (2015).
[Crossref]

Qian, F.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Robinson, J. T.

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Saxena, D.

D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Sergent, S.

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, and Y. Arakawa, “Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser,” ACS Photonics 2(1), 165–171 (2015).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

Sorger, V. J.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Sum, T. C.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, and T. C. Sum, “Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein-Moss Effect,” Nano Lett. 13(11), 5336–5343 (2013).
[Crossref] [PubMed]

Sunkara, M. K.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[Crossref]

Tan, H. H.

D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
[Crossref] [PubMed]

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Tatebayashi, J.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9(8), 501–505 (2015).
[Crossref]

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, and Y. Arakawa, “Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser,” ACS Photonics 2(1), 165–171 (2015).
[Crossref]

Tsang, W. T.

R. C. Miller, D. A. Kleinman, W. T. Tsang, and A. C. Gossard, “Observation of the excited level of excitions in GaAs quantum wells,” Phys. Rev. B 24(2), 1134–1136 (1981).
[Crossref]

Vaddiraju, S.

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[Crossref]

Wang, Z. L.

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Wuestner, S.

S. Wuestner, J. M. Hamm, A. Pusch, and O. Hess, “Plasmonic leaky-mode lasing in active semiconductor nanowires,” Laser Photonics Rev. 9(2), 256–262 (2015).
[Crossref]

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Xiong, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, and T. C. Sum, “Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein-Moss Effect,” Nano Lett. 13(11), 5336–5343 (2013).
[Crossref] [PubMed]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Yip, J. N.

X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, and T. C. Sum, “Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein-Moss Effect,” Nano Lett. 13(11), 5336–5343 (2013).
[Crossref] [PubMed]

Yuan, X.

D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
[Crossref] [PubMed]

Zapien, J. A.

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, and T. C. Sum, “Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein-Moss Effect,” Nano Lett. 13(11), 5336–5343 (2013).
[Crossref] [PubMed]

Zhang, X.

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

ACS Photonics (1)

J. Ho, J. Tatebayashi, S. Sergent, C. F. Fong, S. Iwamoto, and Y. Arakawa, “Low-threshold near-infrared GaAs–AlGaAs core–shell nanowire plasmon laser,” ACS Photonics 2(1), 165–171 (2015).
[Crossref]

Appl. Phys. Lett. (6)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Appl. Phys. Lett. 88(16), 163115 (2006).
[Crossref]

J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84(7), 1189–1191 (2004).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

D. B. Li and C. Z. Ning, “Peculiar features of confinement factors in a metal semiconductor waveguide,” Appl. Phys. Lett. 96(18), 181109 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor laser,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[Crossref]

J. Lumin. (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1, 693–701 (1970).
[Crossref]

Laser Photonics Rev. (1)

S. Wuestner, J. M. Hamm, A. Pusch, and O. Hess, “Plasmonic leaky-mode lasing in active semiconductor nanowires,” Laser Photonics Rev. 9(2), 256–262 (2015).
[Crossref]

Nano Lett. (2)

X. Liu, Q. Zhang, J. N. Yip, Q. Xiong, and T. C. Sum, “Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein-Moss Effect,” Nano Lett. 13(11), 5336–5343 (2013).
[Crossref] [PubMed]

D. Saxena, N. Jiang, X. Yuan, S. Mokkapati, Y. Guo, H. H. Tan, and C. Jagadish, “Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers,” Nano Lett. 16(8), 5080–5086 (2016).
[Crossref] [PubMed]

Nanoscale (1)

C. L. Davies, P. Parkinson, N. Jiang, J. L. Boland, S. Conesa-Boj, H. H. Tan, C. Jagadish, L. M. Herz, and M. B. Johnston, “Low ensemble disorder in quantum well tube nanowires,” Nanoscale 7(48), 20531–20538 (2015).
[Crossref] [PubMed]

Nat. Commun. (2)

Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 4953 (2014).
[Crossref] [PubMed]

T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, and O. Hess, “Cavity-free plasmonic nanolasing enabled by dispersionless stopped light,” Nat. Commun. 5, 4972 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[Crossref] [PubMed]

F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7(9), 701–706 (2008).
[Crossref] [PubMed]

Nat. Photonics (4)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009).
[Crossref]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9(8), 501–505 (2015).
[Crossref]

Nature (3)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421(6920), 241–245 (2003).
[Crossref] [PubMed]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (4)

D. Li and C. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009).
[Crossref]

R. C. Miller, D. A. Kleinman, A. C. Gossard, and O. Munteanu, “Biexcitons in GaAs quantum wells,” Phys. Rev. B 25(10), 6545–6547 (1982).
[Crossref]

R. C. Miller, D. A. Kleinman, W. T. Tsang, and A. C. Gossard, “Observation of the excited level of excitions in GaAs quantum wells,” Phys. Rev. B 24(2), 1134–1136 (1981).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi, B Basic Res. 247(4), 774–788 (2010).

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Other (1)

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the hybrid plasmonic MQW NW laser and magnified cross-sectional view of the MQW structure. (b) Schematic diagram of the electron-hole recombination and photons-SPPs coupling mechanism.

Fig. 2
Fig. 2

Normalized electric field distribution of mode HEy 11 along Y-axis (a) and modal profiles of modes HEy 11, HEx 11, TE01 and cutoff HE21 (b) for the MQW NW on silica substrate; Normalized electric field distribution of mode HEy 11 along Y-axis (c) and modal profiles of modes HEy 11, H E 11 x , TE01 and HE21 (d) for the MQW NW on MgF2-Ag substrate.

Fig. 3
Fig. 3

(a) Effective index Re(neff), (b) Modal confinement factor Γ (values for hybrid plasmonic mode TE01 is multiplied by 0.15 to better visualize details in the other modes), (c) Threshold gain gth and (d) Purcell factor Fp as functions of NW diameter of the hybrid plasmonic and photonic lasers. The inset in (b) shows the Γ of photonic mode TE01 and hybrid plasmonic mode HE21 with diameter between 300 and 360 nm.

Fig. 4
Fig. 4

The dependences of (a) mode effective index Re(neff), (b) modal confinement factor Γ, (c) threshold gain gth and (d) Purcell factor Fp on the NW diameter for MQW NW with different nw and core-shell NW. The inset in (a) shows the electric field distribution of the core-shell (i) and SQW NW (ii) at D = 90nm. The inset in (c) shows the gth for diameter between 70 and 120 nm.

Fig. 5
Fig. 5

Threshold gain gth for SQW NW with different emission wavelength and core-shell NW at small diameters.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Γ= c/ n s v ¯ g s Re[d(εω)/dω | E | 2 ]dxdy Re[d(εω)/dω | E | 2 + μ 0 | H | 2 ]dxdy/2
Γ m =c ε 0 n m m | E | 2 dxdy/ Re(E×H) zdxdy
v ¯ g = 1 2 Re(E×H) zdxdy/ 1 2 Re[d(εω)/dω | E | 2 + μ 0 | H | 2 ] dxdy
g th = 1 Γ ( Γ m α 0 m + 1 L ln 1 R 1 R 2 )
F p = 3 4 π 2 ( λ n ) 3 ( Q V eff )