Abstract

We demonstrate the improvement of the transmission performance based on intermixing noise mitigation techniques in a multiple intermediate-frequency-over-fiber (IFoF) based mobile fronthaul. The interaction between fiber chromatic dispersion and frequency chirp of the directly modulated laser generates the second-order distortion that degrades the performance of multi-IFoF transmission system. To avoid second-order distortion, we use intermediate frequency (IF) spacing optimization and octave-confined frequency plan schemes in which intermixing noise would be generated in the out of signal band and would not affect the quality of transmitted signal. For bandwidth efficient transmission of radio signal over mobile fronthaul link, we employ the dispersion compensation technique to suppress the intermixing noise sufficiently. For realization of the multi-IFoF based mobile fronthaul, we experimentally investigate the transmission performances of 48-, 72- and 144-IF carriers of the long term evolution-advanced (LTE-A) signals mapped with 64-quadrature amplitude modulation (QAM). It is clearly observed that the intermixing noise is suppressed owing to dispersion compensation technique and overall system performances are improved by IF spacing optimization and octave-confined frequency plan. As a result, we successfully transmit 144-IF carriers of the LTE-A signal with less than 8% error vector magnitude (EVM) over 20-km single-mode fiber (SMF) within only 3 GHz bandwidth.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of the transmission performance in multi-IF-over-fiber mobile fronthaul by using tone-reservation technique

Minkyu Sung, Changyo Han, Seung-Hyun Cho, Hwan Seok Chung, and Jong Hyun Lee
Opt. Express 23(23) 29615-29624 (2015)

Digital Mobile Fronthaul Based on Delta–Sigma Modulation for 32 LTE Carrier Aggregation and FBMC Signals

Jing Wang, Zhenhua Yu, Kai Ying, Junwen Zhang, Feng Lu, Mu Xu, Lin Cheng, Xiaoli Ma, and Gee-Kung Chang
J. Opt. Commun. Netw. 9(2) A233-A244 (2017)

Improving performance of mobile fronthaul architecture employing high order delta-sigma modulator with PAM-4 format

Haibo Li, Rong Hu, Qi Yang, Ming Luo, Zhixue He, Peng Jiang, Yongpiao Liu, Xiang Li, and Shaohua Yu
Opt. Express 25(1) 1-9 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, ITU-R, 2015.
  2. P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
    [Crossref]
  3. C.-L. i, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
    [Crossref]
  4. A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
    [Crossref]
  5. D. Breuer, E. Weis, K. Grobe, S. Krauß, F. Musumeci, J. T. Gijon, and B. Skubic, “5G transport in future access networks,” in Proceedings of European Conference on Optical Communication (2016), pp. 229-231.
  6. http://www.cpri.info/ , “Common Public Radio Interface (CPRI); Interface specification” V 6.1, 2014.
  7. S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
    [Crossref]
  8. K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conference (2015), paper Tu2E.1.
  9. K. Miyamoto, S. Kuwano, J. Terada, and A. Otaka, “Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture,” Opt. Express 24(2), 1261–1268 (2016).
    [Crossref] [PubMed]
  10. B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “Optical fronthaul technologies for next-generation mobile communications,” in Proceedings of International Conference on Transparent Optical Networks (2017), paper We.D2.6.
  11. X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-μs processing latency,” in Proceedings of European Conference on Optical Communication (2015), paper We.4.4.3.
  12. S. H. Cho, C. Han, H. S. Chung, and J. H. Lee, “Demonstration of mobile fronthaul test bed based on RoF technology supporting two frequency assignments and 2 × 2 MIMO antennas,” ETRI J. 37(6), 1055–1064 (2015).
    [Crossref]
  13. S. H. Cho, H. S. Chung, C. Han, S. Lee, and J. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conference (2015), paper M2J.5.
    [Crossref]
  14. M. Sung, C. Han, S.-H. Cho, H. S. Chung, and J. H. Lee, “Improvement of the transmission performance in multi-IF-over-fiber mobile fronthaul by using tone-reservation technique,” Opt. Express 23(23), 29615–29624 (2015).
    [Crossref] [PubMed]
  15. M. Sung, S. H. Cho, K. S. Kim, H. K. Kwon, B. S. Kang, D. S. Oh, D. S. Lyu, H. Lee, S. M. Kim, J. H. Lee, and H. S. Chung, “Demonstration of IFoF based 5G mobile fronthaul in 28 GHz millimeter wave testbed supporting Giga-bit mobile services,” in Optical Fiber Communication Conference (2017), paper W1C.5.
    [Crossref]
  16. C. Han, M. Sung, S. H. Cho, H. S. Chung, S. M. Kim, and J. H. Lee, “Impact of dispersion-induced second-order distortion in multi-IFoF-based mobile fronthaul link for C-RAN,” in Optical Fiber Communication Conference (2016), paper TU2B.4.
    [Crossref]
  17. C. Han, M. Sung, S. H. Cho, H. S. Chung, S. M. Kim, and J. H. Lee, “Performance improvement of multi-IFoF-based mobile fronthaul using dispersion-induced distortion mitigation with IF optimization,” J. Lightwave Technol. 34(20), 4772–4778 (2016).
    [Crossref]
  18. N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
    [Crossref]
  19. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20(10), 1208–1216 (1984).
    [Crossref]
  20. E. E. Bergmann, C. Y. Kuo, and S. Y. Huang, “Dispersion-induced composite second-order Distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
    [Crossref]
  21. 3GPP TS 36.141 v. 9.8.0, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing,” Technical Specification Group Radio Access Network, Rel. 9, July, 2011.
  22. N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
    [Crossref]
  23. 3GPP TS 36.104 v. 11.2.0, “Base Station (BS) Radio Transmission and Reception,” Tech. Spec. Group Radio Access Network, Rel. 11, Nov. 2012.

2016 (3)

2015 (3)

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
[Crossref]

S. H. Cho, C. Han, H. S. Chung, and J. H. Lee, “Demonstration of mobile fronthaul test bed based on RoF technology supporting two frequency assignments and 2 × 2 MIMO antennas,” ETRI J. 37(6), 1055–1064 (2015).
[Crossref]

M. Sung, C. Han, S.-H. Cho, H. S. Chung, and J. H. Lee, “Improvement of the transmission performance in multi-IF-over-fiber mobile fronthaul by using tone-reservation technique,” Opt. Express 23(23), 29615–29624 (2015).
[Crossref] [PubMed]

2014 (2)

C.-L. i, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
[Crossref]

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

2006 (1)

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

1991 (1)

E. E. Bergmann, C. Y. Kuo, and S. Y. Huang, “Dispersion-induced composite second-order Distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

1984 (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20(10), 1208–1216 (1984).
[Crossref]

Andre, N. S.

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

Ayoubi, S. E. E.

P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
[Crossref]

Berger, M. S.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
[Crossref]

Bergmann, E. E.

E. E. Bergmann, C. Y. Kuo, and S. Y. Huang, “Dispersion-induced composite second-order Distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

Boldi, M.

P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
[Crossref]

Breuer, D.

D. Breuer, E. Weis, K. Grobe, S. Krauß, F. Musumeci, J. T. Gijon, and B. Skubic, “5G transport in future access networks,” in Proceedings of European Conference on Optical Communication (2016), pp. 229-231.

Bulakci, Ö.

P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
[Crossref]

Checko, A.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
[Crossref]

Cho, S. H.

C. Han, M. Sung, S. H. Cho, H. S. Chung, S. M. Kim, and J. H. Lee, “Performance improvement of multi-IFoF-based mobile fronthaul using dispersion-induced distortion mitigation with IF optimization,” J. Lightwave Technol. 34(20), 4772–4778 (2016).
[Crossref]

S. H. Cho, C. Han, H. S. Chung, and J. H. Lee, “Demonstration of mobile fronthaul test bed based on RoF technology supporting two frequency assignments and 2 × 2 MIMO antennas,” ETRI J. 37(6), 1055–1064 (2015).
[Crossref]

Cho, S.-H.

Christiansen, H. L.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
[Crossref]

Chung, H. S.

Cui, C.

C.-L. i, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
[Crossref]

Dittmann, L.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
[Crossref]

Duan, R.

C.-L. i, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
[Crossref]

Gijon, J. T.

D. Breuer, E. Weis, K. Grobe, S. Krauß, F. Musumeci, J. T. Gijon, and B. Skubic, “5G transport in future access networks,” in Proceedings of European Conference on Optical Communication (2016), pp. 229-231.

Grobe, K.

D. Breuer, E. Weis, K. Grobe, S. Krauß, F. Musumeci, J. T. Gijon, and B. Skubic, “5G transport in future access networks,” in Proceedings of European Conference on Optical Communication (2016), pp. 229-231.

Habel, K.

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

Han, C.

Huang, H. P.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Huang, J.

C.-L. i, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
[Crossref]

Huang, S. Y.

E. E. Bergmann, C. Y. Kuo, and S. Y. Huang, “Dispersion-induced composite second-order Distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

i, C.-L.

C.-L. i, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
[Crossref]

Jiang, J. X.

C.-L. i, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
[Crossref]

Kaloxylos, A.

P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
[Crossref]

Kardaras, G.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
[Crossref]

Kim, S. M.

Krauß, S.

D. Breuer, E. Weis, K. Grobe, S. Krauß, F. Musumeci, J. T. Gijon, and B. Skubic, “5G transport in future access networks,” in Proceedings of European Conference on Optical Communication (2016), pp. 229-231.

Kuo, C. Y.

E. E. Bergmann, C. Y. Kuo, and S. Y. Huang, “Dispersion-induced composite second-order Distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

Kuwano, S.

Lee, J. H.

Li, L.

C.-L. i, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
[Crossref]

Liu, Y.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Louchet, H.

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

Marsch, P.

P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
[Crossref]

Meslener, G. J.

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20(10), 1208–1216 (1984).
[Crossref]

Miyamoto, K.

Musumeci, F.

D. Breuer, E. Weis, K. Grobe, S. Krauß, F. Musumeci, J. T. Gijon, and B. Skubic, “5G transport in future access networks,” in Proceedings of European Conference on Optical Communication (2016), pp. 229-231.

Otaka, A.

Richter, A.

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

Rosowski, T.

P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
[Crossref]

Scolari, L.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
[Crossref]

Silva, I. D.

P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
[Crossref]

Skubic, B.

D. Breuer, E. Weis, K. Grobe, S. Krauß, F. Musumeci, J. T. Gijon, and B. Skubic, “5G transport in future access networks,” in Proceedings of European Conference on Optical Communication (2016), pp. 229-231.

Sung, M.

Terada, J.

Tesanovic, M.

P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
[Crossref]

Weis, E.

D. Breuer, E. Weis, K. Grobe, S. Krauß, F. Musumeci, J. T. Gijon, and B. Skubic, “5G transport in future access networks,” in Proceedings of European Conference on Optical Communication (2016), pp. 229-231.

Wen, J.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Xie, L.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Xu, G. Z.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Yan, Y.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
[Crossref]

Zhang, T.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Zhang, Y. L.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Zhu, N. H.

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

ETRI J. (1)

S. H. Cho, C. Han, H. S. Chung, and J. H. Lee, “Demonstration of mobile fronthaul test bed based on RoF technology supporting two frequency assignments and 2 × 2 MIMO antennas,” ETRI J. 37(6), 1055–1064 (2015).
[Crossref]

IEEE Access (1)

C.-L. i, J. Huang, R. Duan, C. Cui, J. X. Jiang, and L. Li, “Recent progress on C-RAN centralization and cloudification,” IEEE Access 2, 1030–1039 (2014).
[Crossref]

IEEE Commun. Mag. (1)

P. Marsch, I. D. Silva, Ö. Bulakci, M. Tesanovic, S. E. E. Ayoubi, T. Rosowski, A. Kaloxylos, and M. Boldi, “5G radio access network architecture: Design guidelines and key considerations,” IEEE Commun. Mag. 54(11), 24–32 (2016).
[Crossref]

IEEE Commun. Surv. Tutor. (1)

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger, and L. Dittmann, “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20(10), 1208–1216 (1984).
[Crossref]

IEEE Photonics Technol. Lett. (2)

E. E. Bergmann, C. Y. Kuo, and S. Y. Huang, “Dispersion-induced composite second-order Distortion at 1.5 μm,” IEEE Photonics Technol. Lett. 3(1), 59–61 (1991).
[Crossref]

N. S. Andŕe, H. Louchet, K. Habel, and A. Richter, “Analytical formulation for SNR prediction in IMDD OFDM-based access systems,” IEEE Photonics Technol. Lett. 26(12), 1255–1258 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

N. H. Zhu, T. Zhang, Y. L. Zhang, G. Z. Xu, J. Wen, H. P. Huang, Y. Liu, and L. Xie, “Estimation of frequency response of directly modulated lasers from optical spectra,” J. Phys. D Appl. Phys. 39(21), 4578–4581 (2006).
[Crossref]

Opt. Express (2)

Other (12)

B. G. Kim, S. H. Bae, H. Kim, and Y. C. Chung, “Optical fronthaul technologies for next-generation mobile communications,” in Proceedings of International Conference on Transparent Optical Networks (2017), paper We.D2.6.

X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Experimental demonstration of high-throughput low-latency mobile fronthaul supporting 48 20-MHz LTE signals with 59-Gb/s CPRI-equivalent rate and 2-μs processing latency,” in Proceedings of European Conference on Optical Communication (2015), paper We.4.4.3.

Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, ITU-R, 2015.

D. Breuer, E. Weis, K. Grobe, S. Krauß, F. Musumeci, J. T. Gijon, and B. Skubic, “5G transport in future access networks,” in Proceedings of European Conference on Optical Communication (2016), pp. 229-231.

http://www.cpri.info/ , “Common Public Radio Interface (CPRI); Interface specification” V 6.1, 2014.

S. H. Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee, and J. Lee, “Cost-effective next generation mobile fronthaul architecture with Multi-IF carrier transmission scheme,” in Optical Fiber Communication Conference (2014), paper Tu2B.6.
[Crossref]

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Optical Fiber Communication Conference (2015), paper Tu2E.1.

M. Sung, S. H. Cho, K. S. Kim, H. K. Kwon, B. S. Kang, D. S. Oh, D. S. Lyu, H. Lee, S. M. Kim, J. H. Lee, and H. S. Chung, “Demonstration of IFoF based 5G mobile fronthaul in 28 GHz millimeter wave testbed supporting Giga-bit mobile services,” in Optical Fiber Communication Conference (2017), paper W1C.5.
[Crossref]

C. Han, M. Sung, S. H. Cho, H. S. Chung, S. M. Kim, and J. H. Lee, “Impact of dispersion-induced second-order distortion in multi-IFoF-based mobile fronthaul link for C-RAN,” in Optical Fiber Communication Conference (2016), paper TU2B.4.
[Crossref]

S. H. Cho, H. S. Chung, C. Han, S. Lee, and J. Lee, “Experimental demonstrations of next generation cost-effective mobile fronthaul with IFoF technique,” in Optical Fiber Communication Conference (2015), paper M2J.5.
[Crossref]

3GPP TS 36.141 v. 9.8.0, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) conformance testing,” Technical Specification Group Radio Access Network, Rel. 9, July, 2011.

3GPP TS 36.104 v. 11.2.0, “Base Station (BS) Radio Transmission and Reception,” Tech. Spec. Group Radio Access Network, Rel. 11, Nov. 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration of the next-generation mobile fronthaul based on the multi-IFoF technology.

Fig. 2
Fig. 2

Second-order distortion components of two IF carriers. The red lines indicate the intermixing noise.

Fig. 3
Fig. 3

Concept of intermixing noise mitigation schemes (a) IF spacing optimization, (b) octave-confined frequency plan, and (c) dispersion compensation schemes.

Fig. 4
Fig. 4

Experimental setup for multi-IF carrier LTE-A signal transmission over fronthaul link.

Fig. 5
Fig. 5

EVM performance as a function of OMI/ch for 48, 72, and 144 IF carriers of the LTE-A signal under optical back to back condition.

Fig. 6
Fig. 6

Measured RF spectra of received mutli-IF carriers signal under optical BTB condition (blue) and 20-km transmission (red) (a) IF spacing optimization; (b) octave-confined frequency plan.

Fig. 7
Fig. 7

EVM performances as functions of channel index for 48-IF carriers LTE-A signal under optical BTB condition and 20-km transmission with IF spacing optimization, octave-confined frequency plan, and dispersion compensation schemes (a) optical BTB; (b) 20-km transmission.

Fig. 8
Fig. 8

EVM performances as functions of channel index for 72-IF carriers LTE-A signal under BTB condition and 20-km transmission with octave-confined frequency plan and dispersion compensation schemes.

Fig. 9
Fig. 9

EVM performances as functions of channel index for 144-IF carriers LTE-A signal under BTB condition and 20-km transmission with dispersion compensation scheme.

Tables (1)

Tables Icon

Table 1 Parameters of the frequency plan to measure performance of intermixing noise schemes over mobile fronthaul link

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p =α[ p avg +I(t) dp dI p ¯ dΔτ dt ]+α[ I 2 (t) 2 d 2 p d I 2 +DL λ 2 c dν dI dp dI d( I 2 (t)) dt ]
I(t)=Re j mj e i ω j t , I 2 (t)= 1 2 Re( j k ( mjmk e i( ω j + ω k )t +mjm k * e i( ω j ω k )t ) )
P(f(t),ω)= | F(ω) | 2
Intermixing noise 2nd ( ω j ± ω k )=cj±km j 2 m k 2 { ( α 2 d 2 p d I 2 ) 2 + ( ω j ± ω k ) 2 ( αDL dν dI dp dI λ 2 c ) 2 }
(k1)ΔfBW< f distortion <(k1)Δf+BW, ( f j f k terms, where k=1,2,...,n)
2 f 1 +(k1)ΔfBW< f distortion <2 f 1 +(k1)Δf+BW, ( f j + f k where k=1,2,...,2n1)
(n1)Δf+BW<f10.5BW,( f j f k terms)
f1+(n1)Δf+0.5BW<2f1BW,( f j + f k terms)
TotalBW=(n1)Δf+BW
TotalBW+0.5BW<f1