Abstract

A novel automatic bias control (ABC) method for optical in-phase and quadrature (IQ) modulator is proposed and experimentally demonstrated. In the proposed method, two different low frequency sine wave dither signals are generated and added on to the I/Q bias signal respectively. Instead of power monitoring of the harmonics of the dither signal, dither-correlation detection is proposed and used to adjust the bias voltages of the optical IQ modulator. By this way, not only frequency spectral analysis isn’t required but also the directional bias adjustment could be realized, resulting in the decrease of algorithm complexity and the growth of convergence rate of ABC algorithm. The results show that the sensitivity of the proposed ABC method outperforms that of the traditional dither frequency monitoring method. Moreover, the proposed ABC method is proved to be modulation-format-free, and the transmission penalty caused by this method for both 10 Gb/s optical QPSK and 17.9 Gb/s optical 16QAM-OFDM signal transmission are negligible in our experiment.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Auto bias control technique for optical OFDM transmitter with bias dithering

Tao Gui, Cai Li, Qi Yang, Xiao Xiao, Linghen Meng, Chao Li, Xingwen Yi, Chao Jin, and Zhaohui Li
Opt. Express 21(5) 5833-5841 (2013)

Field trial of automatic bias control scheme for optical IQ modulator and demodulator with directly detected 112 Gb/s DQPSK Signal

Hwan Seok Chung, Sun Hyok Chang, Jong Hyun Lee, and Kwangjoon Kim
Opt. Express 21(21) 24962-24968 (2013)

Auto bias control and bias hold circuit for IQ-modulator in flexible optical QAM transmitter with Nyquist filtering

Hiroto Kawakami, Takayuki Kobayashi, Mitsuteru Yoshida, Tomoyoshi Kataoka, and Yutaka Miyamoto
Opt. Express 22(23) 28163-28168 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator,” Opt. Express 24(19), 22088–22096 (2016).
    [Crossref] [PubMed]
  2. K. Kasai, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa, “80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver,” Opt. Express 23(22), 29174–29183 (2015).
    [Crossref] [PubMed]
  3. G. W. Lu, T. Sakamoto, and T. Kawanishi, “Flexible high-order QAM transmitter using tandem IQ modulators for generating 16/32/36/64-QAM with balanced complexity in electronics and optics,” Opt. Express 21(5), 6213–6223 (2013).
    [Crossref] [PubMed]
  4. S. Yan, X. Weng, Y. Gao, C. Lu, A. P. T. Lau, Y. Ji, L. Liu, and X. Xu, “Generation of square or hexagonal 16-QAM signals using a dual-drive IQ modulator driven by binary signals,” Opt. Express 20(27), 29023–29034 (2012).
    [Crossref] [PubMed]
  5. L. Tao, J. Yu, and N. Chi, “Generation of flat and stable multi-carriers based on only integrated IQ modulator and its implementation for 112Gb/s PM-QPSK transmitter,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper JW2A.86.
    [Crossref]
  6. F. A. Gutiérrez, P. Perry, F. Smyth, A. D. Ellis, and L. P. Barry, “Optimum bias point in broadband subcarrier multiplexing with optical IQ modulators,” J. Lightwave Technol. 33(1), 258–266 (2015).
    [Crossref]
  7. J. Švarný, “Analysis of quadrature bias-point drift of Mach-Zehnder electro-optic modulator,” in Proceedings of IEEE Biennial Baltic Electronics Conference (IEEE, 2010), pp. 231–234.
    [Crossref]
  8. H. Nagata, Y. Li, D. R. Maack, and W. R. Bosenberg, “Reliability estimation from zero-failure LiNbO3 modulator bias drift data,” IEEE Photonics Technol. Lett. 16(6), 1477–1479 (2004).
    [Crossref]
  9. P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photonics Technol. Lett. 22(14), 1030–1032 (2010).
    [Crossref]
  10. H. S. Chung, S. H. Chang, J. C. Lee, J. H. Lee, and K. Kim, “Field experiment of 112 Gb/s dual-carrier DQPSK signal transmission with automatic bias control of optical IQ modulator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (Optical Society of America, 2013), paper NW4E.5.
    [Crossref]
  11. T. Sakamoto, I. Morohashi, and T. Kawanishi, “Mach-Zehnder-modulator-based flat comb generator with auto bias control,” in Proceedings of IEEE International Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference(IEEE2008), pp. 154–157.
    [Crossref]
  12. X. Zhu, Z. Zheng, C. Zhang, L. Zhu, Z. Tao, and Z. Chen, “Coherent detection-based automatic bias control of Mach-Zehnder modulators for various modulation formats,” J. Lightwave Technol. 32(14), 2502–2509 (2014).
    [Crossref]
  13. X. Zhang, Y. Wang, X. Xiao, C. Li, C. Li, Z. Li, Q. Yang, and S. Yu, “Real-time bias control for optical OFDM transmitter,” in Asia Communications and Photonics Conference 2013 (Optical Society of America, 2013), paper AF1E.7.
    [Crossref]
  14. T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
    [Crossref] [PubMed]
  15. P. S. Cho, J. B. Khurgin, and I. Shpantzer, “Closed-loop bias control of optical quadrature modulator,” IEEE Photonics Technol. Lett. 18(21), 2209–2211 (2006).
    [Crossref]
  16. T. Yoshida, T. Sugihara, K. Sawada, K. Uto, and K. Shimizu, “Automatic Bias Control for Arbitrary Optical Signal Generation by Dual-Parallel MZM,” in Proceedings of OptoElectronics and Communications Conference (OECC2010), paper 8B2–5.
  17. H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express 19(26), B308–B312 (2011).
    [Crossref] [PubMed]
  18. H. Kawakami, T. Kobayashi, M. Yoshida, T. Kataoka, and Y. Miyamoto, “Auto bias control and bias hold circuit for IQ-modulator in flexible optical QAM transmitter with Nyquist filtering,” Opt. Express 22(23), 28163–28168 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (2)

2014 (2)

2013 (2)

2012 (1)

2011 (1)

2010 (1)

P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photonics Technol. Lett. 22(14), 1030–1032 (2010).
[Crossref]

2006 (1)

P. S. Cho, J. B. Khurgin, and I. Shpantzer, “Closed-loop bias control of optical quadrature modulator,” IEEE Photonics Technol. Lett. 18(21), 2209–2211 (2006).
[Crossref]

2004 (1)

H. Nagata, Y. Li, D. R. Maack, and W. R. Bosenberg, “Reliability estimation from zero-failure LiNbO3 modulator bias drift data,” IEEE Photonics Technol. Lett. 16(6), 1477–1479 (2004).
[Crossref]

Barry, L. P.

Beppu, S.

Bosenberg, W. R.

H. Nagata, Y. Li, D. R. Maack, and W. R. Bosenberg, “Reliability estimation from zero-failure LiNbO3 modulator bias drift data,” IEEE Photonics Technol. Lett. 16(6), 1477–1479 (2004).
[Crossref]

Chen, Z.

Cho, P. S.

P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photonics Technol. Lett. 22(14), 1030–1032 (2010).
[Crossref]

P. S. Cho, J. B. Khurgin, and I. Shpantzer, “Closed-loop bias control of optical quadrature modulator,” IEEE Photonics Technol. Lett. 18(21), 2209–2211 (2006).
[Crossref]

Ellis, A. D.

Gao, Y.

Gui, T.

Gutiérrez, F. A.

Ji, Y.

Jin, C.

Kasai, K.

Kataoka, T.

Kawakami, H.

Kawanishi, T.

G. W. Lu, T. Sakamoto, and T. Kawanishi, “Flexible high-order QAM transmitter using tandem IQ modulators for generating 16/32/36/64-QAM with balanced complexity in electronics and optics,” Opt. Express 21(5), 6213–6223 (2013).
[Crossref] [PubMed]

T. Sakamoto, I. Morohashi, and T. Kawanishi, “Mach-Zehnder-modulator-based flat comb generator with auto bias control,” in Proceedings of IEEE International Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference(IEEE2008), pp. 154–157.
[Crossref]

Khurgin, J. B.

P. S. Cho, J. B. Khurgin, and I. Shpantzer, “Closed-loop bias control of optical quadrature modulator,” IEEE Photonics Technol. Lett. 18(21), 2209–2211 (2006).
[Crossref]

Kobayashi, T.

Lau, A. P. T.

Li, C.

Li, Y.

H. Nagata, Y. Li, D. R. Maack, and W. R. Bosenberg, “Reliability estimation from zero-failure LiNbO3 modulator bias drift data,” IEEE Photonics Technol. Lett. 16(6), 1477–1479 (2004).
[Crossref]

Li, Z.

Liu, L.

Lu, C.

Lu, G. W.

Maack, D. R.

H. Nagata, Y. Li, D. R. Maack, and W. R. Bosenberg, “Reliability estimation from zero-failure LiNbO3 modulator bias drift data,” IEEE Photonics Technol. Lett. 16(6), 1477–1479 (2004).
[Crossref]

Meng, L.

Miyamoto, Y.

Morohashi, I.

T. Sakamoto, I. Morohashi, and T. Kawanishi, “Mach-Zehnder-modulator-based flat comb generator with auto bias control,” in Proceedings of IEEE International Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference(IEEE2008), pp. 154–157.
[Crossref]

Nagata, H.

H. Nagata, Y. Li, D. R. Maack, and W. R. Bosenberg, “Reliability estimation from zero-failure LiNbO3 modulator bias drift data,” IEEE Photonics Technol. Lett. 16(6), 1477–1479 (2004).
[Crossref]

Nakazawa, M.

Nazarathy, M.

P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photonics Technol. Lett. 22(14), 1030–1032 (2010).
[Crossref]

Perry, P.

Sakamoto, T.

G. W. Lu, T. Sakamoto, and T. Kawanishi, “Flexible high-order QAM transmitter using tandem IQ modulators for generating 16/32/36/64-QAM with balanced complexity in electronics and optics,” Opt. Express 21(5), 6213–6223 (2013).
[Crossref] [PubMed]

T. Sakamoto, I. Morohashi, and T. Kawanishi, “Mach-Zehnder-modulator-based flat comb generator with auto bias control,” in Proceedings of IEEE International Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference(IEEE2008), pp. 154–157.
[Crossref]

Shpantzer, I.

P. S. Cho, J. B. Khurgin, and I. Shpantzer, “Closed-loop bias control of optical quadrature modulator,” IEEE Photonics Technol. Lett. 18(21), 2209–2211 (2006).
[Crossref]

Smyth, F.

Švarný, J.

J. Švarný, “Analysis of quadrature bias-point drift of Mach-Zehnder electro-optic modulator,” in Proceedings of IEEE Biennial Baltic Electronics Conference (IEEE, 2010), pp. 231–234.
[Crossref]

Tao, Z.

Wang, Y.

Weng, X.

Xiao, X.

Xu, X.

Yan, S.

Yang, Q.

Yi, X.

Yoshida, E.

Yoshida, M.

Zhang, C.

Zheng, Z.

Zhu, L.

Zhu, X.

IEEE Photonics Technol. Lett. (3)

H. Nagata, Y. Li, D. R. Maack, and W. R. Bosenberg, “Reliability estimation from zero-failure LiNbO3 modulator bias drift data,” IEEE Photonics Technol. Lett. 16(6), 1477–1479 (2004).
[Crossref]

P. S. Cho and M. Nazarathy, “Bias control for optical OFDM transmitters,” IEEE Photonics Technol. Lett. 22(14), 1030–1032 (2010).
[Crossref]

P. S. Cho, J. B. Khurgin, and I. Shpantzer, “Closed-loop bias control of optical quadrature modulator,” IEEE Photonics Technol. Lett. 18(21), 2209–2211 (2006).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (7)

H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express 19(26), B308–B312 (2011).
[Crossref] [PubMed]

H. Kawakami, T. Kobayashi, M. Yoshida, T. Kataoka, and Y. Miyamoto, “Auto bias control and bias hold circuit for IQ-modulator in flexible optical QAM transmitter with Nyquist filtering,” Opt. Express 22(23), 28163–28168 (2014).
[Crossref] [PubMed]

Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator,” Opt. Express 24(19), 22088–22096 (2016).
[Crossref] [PubMed]

K. Kasai, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa, “80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver,” Opt. Express 23(22), 29174–29183 (2015).
[Crossref] [PubMed]

G. W. Lu, T. Sakamoto, and T. Kawanishi, “Flexible high-order QAM transmitter using tandem IQ modulators for generating 16/32/36/64-QAM with balanced complexity in electronics and optics,” Opt. Express 21(5), 6213–6223 (2013).
[Crossref] [PubMed]

S. Yan, X. Weng, Y. Gao, C. Lu, A. P. T. Lau, Y. Ji, L. Liu, and X. Xu, “Generation of square or hexagonal 16-QAM signals using a dual-drive IQ modulator driven by binary signals,” Opt. Express 20(27), 29023–29034 (2012).
[Crossref] [PubMed]

T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express 21(5), 5833–5841 (2013).
[Crossref] [PubMed]

Other (6)

L. Tao, J. Yu, and N. Chi, “Generation of flat and stable multi-carriers based on only integrated IQ modulator and its implementation for 112Gb/s PM-QPSK transmitter,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper JW2A.86.
[Crossref]

H. S. Chung, S. H. Chang, J. C. Lee, J. H. Lee, and K. Kim, “Field experiment of 112 Gb/s dual-carrier DQPSK signal transmission with automatic bias control of optical IQ modulator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (Optical Society of America, 2013), paper NW4E.5.
[Crossref]

T. Sakamoto, I. Morohashi, and T. Kawanishi, “Mach-Zehnder-modulator-based flat comb generator with auto bias control,” in Proceedings of IEEE International Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference(IEEE2008), pp. 154–157.
[Crossref]

T. Yoshida, T. Sugihara, K. Sawada, K. Uto, and K. Shimizu, “Automatic Bias Control for Arbitrary Optical Signal Generation by Dual-Parallel MZM,” in Proceedings of OptoElectronics and Communications Conference (OECC2010), paper 8B2–5.

X. Zhang, Y. Wang, X. Xiao, C. Li, C. Li, Z. Li, Q. Yang, and S. Yu, “Real-time bias control for optical OFDM transmitter,” in Asia Communications and Photonics Conference 2013 (Optical Society of America, 2013), paper AF1E.7.
[Crossref]

J. Švarný, “Analysis of quadrature bias-point drift of Mach-Zehnder electro-optic modulator,” in Proceedings of IEEE Biennial Baltic Electronics Conference (IEEE, 2010), pp. 231–234.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The proposed auto bias control configuration based on dither-correlation technique.

Fig. 2
Fig. 2

The simulated power of dither inter-modulation frequency ( f 1 ± f 2 ) (a), low frequency RF signals (b) and the correlation integral coefficients C I P versus bias voltage (c).

Fig. 3
Fig. 3

The simulated correlation integral coefficients C I P (a) and C I I (b) versus bias voltage.

Fig. 4
Fig. 4

Simulated C I I curves with different amplitude SC-QPSK signals (a), C I I curves with different modulation format RF signals ( V pp =0.8 V πRF ) (b), C I P curves with different amplitude SC-QPSK signals (c), and C I P curves with different modulation format RF signals ( V pp =0.8 V πRF ) (d). V πRF is the half-wave voltage of two-child MZMs at the RF signal port.

Fig. 5
Fig. 5

The slope of C I P versus different sampling frequency.

Fig. 6
Fig. 6

The monitored signals as a function of errors of V biasI (a) and V biasP (b) around the optimum bias point by using different ABC method with different dither signal amplitude.

Fig. 7
Fig. 7

The experimental setup of coherent optical back-to-back transmission system based on the proposed ABC scheme.

Fig. 8
Fig. 8

The measured correlation integral coefficient C I I (a), C I Q (b), and C I P (c) versus different bias voltages.

Fig. 9
Fig. 9

The measured BER vs OSNR curves (a) and the C I I versus ΔV curves (b) with different dither amplitudes.

Fig. 10
Fig. 10

The distinguish ratio curves of C I I in different MD value.

Fig. 11
Fig. 11

The measured BER vs OSNR curves by using different modulation formats.

Fig. 12
Fig. 12

The measured EVM performance under temperature-varying conditions.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S(t)= E i 2 [ cos( π 2 V I + V biasI V π )+cos( π 2 V Q + V biasQ V π ) e jp ], V biasI =BiasI V I 0 V biasQ =BiasQ V Q 0
V I =Asin(2π f 1 t) V Q =Asin(2π f 2 t),
| S(t) | 2 = I 2 (t)+ Q 2 (t)+2I(t)Q(t)cosp I(t)=cos( π 2 Asin(2π f 1 t)+ V biasI V π ) . Q(t)=cos( π 2 Asin(2π f 2 t)+ V biasQ V π )
I(t)A[ sin(2π f 1 t)+Δ b 1 ] Q(t)A[ sin(2π f 2 t)+Δ b 2 ] | S(t) | 2 A 2 [ sin 2 (2π f 1 t)+ sin 2 (2π f 2 t) , +2Δ b 1 sin(2π f 1 t)+2Δ b 2 sin(2π f 2 t) +2sin(2π f 1 t)sin(2π f 2 t)cosp]
C I I = 0 T | S(t) | 2 sin(2π f 1 t+ φ 1 )dt C I Q = 0 T | S(t) | 2 sin(2π f 2 t+ φ 2 )dt , C I P = 0 T | S(t) | 2 sin(2π f 1 t+ φ 1 )sin(2π f 2 t+ φ 2 )dt
C I I = C 1 sin( π V biasI V π )+ C 1 sin( π V biasI 2 V π )sin( π V biasQ 2 V π )cos(p) C I Q = C 2 sin( π V biasQ V π )+ C 2 sin( π V biasI 2 V π )sin( π V biasQ 2 V π )cos(p) , C I P = C 3 sin( π V biasI 2 V π )sin( π V biasQ 2 V π )cos(p)
C I I = C 1 sin( π V biasI V π ) C I Q = C 2 sin( π V biasQ V π ). C I P = C 3 cos(p)
Bias P n+1 =Bias P n C I P n K P ,
C I I = 0 T | S(t) | 2 sin(2π f 1 t+ φ 1 )dt k=0 N1 | S(kΔt) | 2 sin(2π f 1 kΔt+ φ 1 ) C I Q = 0 T | S(t) | 2 sin(2π f 2 t+ φ 2 )dt , k=0 N1 | S(kΔt) | 2 sin(2π f 2 kΔt+ φ 2 ) C I P = 0 T | S(t) | 2 sin(2π f 1 t+ φ 1 )sin(2π f 2 t+ φ 2 )dt k=0 N1 | S(kΔt) | 2 sin(2π f 1 kΔt+ φ 1 )sin(2π f 2 kΔt+ φ 2 )