Abstract

We theoretically and experimentally investigate the multipolar hybrid plasmon-photon modes supported by a dielectric-metal core-shell resonator consisting of a dielectric core wrapped by a thin silver shell and the whispering-gallery modes in its pure dielectric counterpart (the dielectric sphere with the same size). We theoretically demonstrate that in a certain wavelength range the achievable maximum Q-factors of hybrid modes could be either larger or smaller than that of whispering-gallery modes, depending on the size of the resonator. By means of the coupling of the dye molecules to the hybrid and whispering-gallery modes, the reshaped fluorescence spectra are measured for resonators containing two different sized dye-doped dielectric spheres, which allow us to compare the Q-factors of hybrid and whispering-gallery modes, providing direct experimental support to the theoretical predictions. Our results provide guidance for appropriately choosing plasmonic core-shell (hybrid modes) or dielectric resonators (whispering-gallery modes) in applications such as ultrasensitive bio-sensors, low-threshold lasing, slow-light and nonlinear optical devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybridizing whispering gallery modes and plasmonic resonances in a photonic metadevice for biosensing applications [Invited]

Carolin Klusmann, Radius N. S. Suryadharma, Jens Oppermann, Carsten Rockstuhl, and Heinz Kalt
J. Opt. Soc. Am. B 34(7) D46-D55 (2017)

Finite element simulation of a perturbed axial-symmetric whispering-gallery mode and its use for intensity enhancement with a nanoparticle coupled to a microtoroid

Alex Kaplan, Matthew Tomes, Tal Carmon, Maxim Kozlov, Oren Cohen, Guy Bartal, and Harald G. L. Schwefel
Opt. Express 21(12) 14169-14180 (2013)

High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity

Han-Youl Ryu, Masaya Notomi, Guk-Hyun Kim, and Yong-Hee Lee
Opt. Express 12(8) 1708-1719 (2004)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  3. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  5. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3(3), 643–652 (2009).
    [Crossref] [PubMed]
  6. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
    [Crossref] [PubMed]
  7. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  8. J. Pan, Z. Chen, J. Chen, P. Zhan, C. J. Tang, and Z. L. Wang, “Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell,” Opt. Lett. 37(7), 1181–1183 (2012).
    [Crossref] [PubMed]
  9. X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
    [Crossref] [PubMed]
  10. C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
    [Crossref] [PubMed]
  11. S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 155431 (2002).
  12. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
    [Crossref] [PubMed]
  13. A. Rottler, M. Bröll, S. Schwaiger, D. Heitmann, and S. Mendach, “Tailoring of high-Q-factor surface plasmon modes on silver microtubes,” Opt. Lett. 36(7), 1240–1242 (2011).
    [Crossref] [PubMed]
  14. Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
    [Crossref] [PubMed]
  15. C. L. Zou, Y. F. Xiao, Z. F. Han, C. H. Dong, X. D. Chen, J. M. Cui, G. C. Guo, and F. W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27(12), 2495–2498 (2010).
    [Crossref]
  16. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
    [Crossref] [PubMed]
  17. A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with A Silver-Coated Glass Fiber with a Varying Diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
    [Crossref] [PubMed]
  18. J. Gu, Z. Zhang, M. Li, and Y. Song, “Mode characteristics of metal-coated microcavity,” Phys. Rev. A 90(1), 013816 (2014).
    [Crossref]
  19. Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
    [Crossref]
  20. P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
    [Crossref]
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  22. C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
    [Crossref]
  23. J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. V. Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
    [Crossref]
  24. P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
    [Crossref] [PubMed]

2016 (1)

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

2015 (3)

Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
[Crossref]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

2014 (1)

J. Gu, Z. Zhang, M. Li, and Y. Song, “Mode characteristics of metal-coated microcavity,” Phys. Rev. A 90(1), 013816 (2014).
[Crossref]

2013 (2)

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with A Silver-Coated Glass Fiber with a Varying Diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

A. Rottler, M. Bröll, S. Schwaiger, D. Heitmann, and S. Mendach, “Tailoring of high-Q-factor surface plasmon modes on silver microtubes,” Opt. Lett. 36(7), 1240–1242 (2011).
[Crossref] [PubMed]

2010 (5)

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

C. L. Zou, Y. F. Xiao, Z. F. Han, C. H. Dong, X. D. Chen, J. M. Cui, G. C. Guo, and F. W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27(12), 2495–2498 (2010).
[Crossref]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (4)

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]

2008 (1)

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. V. Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[Crossref]

2007 (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 155431 (2002).

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Atwater, H. A.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. V. Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Blaaderen, A. V.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. V. Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[Crossref]

Bröll, M.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with A Silver-Coated Glass Fiber with a Varying Diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

A. Rottler, M. Bröll, S. Schwaiger, D. Heitmann, and S. Mendach, “Tailoring of high-Q-factor surface plasmon modes on silver microtubes,” Opt. Lett. 36(7), 1240–1242 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Chen, J.

Chen, X. D.

Chen, Z.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
[Crossref]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

J. Pan, Z. Chen, J. Chen, P. Zhan, C. J. Tang, and Z. L. Wang, “Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell,” Opt. Lett. 37(7), 1181–1183 (2012).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cui, J. M.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dong, C. H.

C. L. Zou, Y. F. Xiao, Z. F. Han, C. H. Dong, X. D. Chen, J. M. Cui, G. C. Guo, and F. W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27(12), 2495–2498 (2010).
[Crossref]

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ehlermann, J.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with A Silver-Coated Glass Fiber with a Varying Diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Fujita, K.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gong, Q.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Gu, J.

J. Gu, Z. Zhang, M. Li, and Y. Song, “Mode characteristics of metal-coated microcavity,” Phys. Rev. A 90(1), 013816 (2014).
[Crossref]

Gu, P.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
[Crossref]

Guo, G. C.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 155431 (2002).

Han, Z. F.

C. L. Zou, Y. F. Xiao, Z. F. Han, C. H. Dong, X. D. Chen, J. M. Cui, G. C. Guo, and F. W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27(12), 2495–2498 (2010).
[Crossref]

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Harland, M.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with A Silver-Coated Glass Fiber with a Varying Diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

He, X.

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Heitmann, D.

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Jackson, J. B.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 155431 (2002).

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kildishev, A. V.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Klingbeil, M.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with A Silver-Coated Glass Fiber with a Varying Diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Li, B. B.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Li, M.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

J. Gu, Z. Zhang, M. Li, and Y. Song, “Mode characteristics of metal-coated microcavity,” Phys. Rev. A 90(1), 013816 (2014).
[Crossref]

Li, Y.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Li, Z. Q.

Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Liu, C.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Lu, Y.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Mao, L.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Mendach, S.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with A Silver-Coated Glass Fiber with a Varying Diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

A. Rottler, M. Bröll, S. Schwaiger, D. Heitmann, and S. Mendach, “Tailoring of high-Q-factor surface plasmon modes on silver microtubes,” Opt. Lett. 36(7), 1240–1242 (2011).
[Crossref] [PubMed]

Meng, X.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Ming, H.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Ming, N.

C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]

Moroz, A.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. V. Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Ni, Y.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nordlander, P.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Pan, J.

Penninkhof, J. J.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. V. Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[Crossref]

Polman, A.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. V. Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[Crossref]

Radloff, C.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 155431 (2002).

Rottler, A.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with A Silver-Coated Glass Fiber with a Varying Diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

A. Rottler, M. Bröll, S. Schwaiger, D. Heitmann, and S. Mendach, “Tailoring of high-Q-factor surface plasmon modes on silver microtubes,” Opt. Lett. 36(7), 1240–1242 (2011).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schwaiger, S.

Shalaev, V. M.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Shen, Q.

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Sheng, P.

C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

Song, Y.

J. Gu, Z. Zhang, M. Li, and Y. Song, “Mode characteristics of metal-coated microcavity,” Phys. Rev. A 90(1), 013816 (2014).
[Crossref]

Sonnefraud, Y.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Sun, F. W.

Sun, G.

C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Sweatlock, L. A.

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. V. Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[Crossref]

Tanaka, K.

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

Tang, C.

C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]

Tang, C. J.

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Van Dorpe, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Wan, M.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
[Crossref]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Wang, P.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Wang, Z.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
[Crossref]

C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]

Wang, Z. L.

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Westcott, S. L.

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 155431 (2002).

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wu, W.

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

Xiao, Y. F.

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

C. L. Zou, Y. F. Xiao, Z. F. Han, C. H. Dong, X. D. Chen, J. M. Cui, G. C. Guo, and F. W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27(12), 2495–2498 (2010).
[Crossref]

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Zhan, P.

Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
[Crossref]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

J. Pan, Z. Chen, J. Chen, P. Zhan, C. J. Tang, and Z. L. Wang, “Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell,” Opt. Lett. 37(7), 1181–1183 (2012).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
[Crossref]

Zhang, D.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Zhang, W.

C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Zhang, Z.

J. Gu, Z. Zhang, M. Li, and Y. Song, “Mode characteristics of metal-coated microcavity,” Phys. Rev. A 90(1), 013816 (2014).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Zhu, S.

C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]

Zou, C. L.

C. L. Zou, Y. F. Xiao, Z. F. Han, C. H. Dong, X. D. Chen, J. M. Cui, G. C. Guo, and F. W. Sun, “High-Q nanoring surface plasmon microresonator,” J. Opt. Soc. Am. B 27(12), 2495–2498 (2010).
[Crossref]

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

ACS Nano (1)

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3(3), 643–652 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Z. Q. Li, C. Zhang, P. Gu, M. Wan, P. Zhan, Z. Chen, and Z. Wang, “Shaping the fluorescence emission by cavity plasmons in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(25), 251105 (2015).
[Crossref]

P. Gu, M. Wan, Q. Shen, X. He, Z. Chen, P. Zhan, and Z. Wang, “Experimental observation of sharp cavity plasmon resonances in dielectric-metal core-shell resonators,” Appl. Phys. Lett. 107(14), 141908 (2015).
[Crossref]

J. Appl. Phys. (1)

J. J. Penninkhof, L. A. Sweatlock, A. Moroz, H. A. Atwater, A. V. Blaaderen, and A. Polman, “Optical cavity modes in gold shell colloids,” J. Appl. Phys. 103(12), 123105 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (3)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed,” Nano Lett. 10, 3184–3189 (2010).
[Crossref] [PubMed]

X. Meng, A. V. Kildishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Wavelength-tunable spasing in the visible,” Nano Lett. 13(9), 4106–4112 (2013).
[Crossref] [PubMed]

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Nanoscale (1)

P. Gu, M. Wan, W. Wu, Z. Chen, and Z. Wang, “Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators,” Nanoscale 8(19), 10358–10363 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Nature (3)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

J. Gu, Z. Zhang, M. Li, and Y. Song, “Mode characteristics of metal-coated microcavity,” Phys. Rev. A 90(1), 013816 (2014).
[Crossref]

Phys. Rev. B (1)

C. Tang, Z. Wang, W. Zhang, S. Zhu, N. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 155431 (2002).

Phys. Rev. Lett. (2)

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with A Silver-Coated Glass Fiber with a Varying Diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Y. F. Xiao, C. L. Zou, B. B. Li, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref] [PubMed]

Science (1)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[Crossref] [PubMed]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The theoretical Q-factors of multipolar hybrid (circle symbols) and whispering-gallery resonances (square symbols) in a certain wavelength range of 550 nm - 655 nm supported by a dielectric-metal core-shell resonator and a same dielectric resonator, respectively, depending on the radii of the dielectric sphere. The bottom and top insets display the schematics of a dielectric resonator (radius: r; refractive index: n) and a dielectric-metal core-shell resonator (radius: r; refractive index: n; metal shell thickness: t), respectively. The red, blue and black dashed lines are guides to the eye.

Fig. 2
Fig. 2

Total (Qtotal), radiation (Qrad), and absorption (Qabs) quality factors of TM resonances (a) and TE resonances (b) supported by the 0.5-μm-radius dielectric resonator and DMCSR, and TM resonances (e) and TE resonances (f) supported by the 1.6-μm-radius dielectric resonator and DMCSR. Normalized electric field intensity distributions calculated for WG(TM,5,1) (c), HPP(TM,7,1) (d), WG(TM,20,1) (g), and HPP(TM,30,1) (h). The scale bar is 0.5 μm in (c) and (d), and 1.0 μm in (g) and (h).

Fig. 3
Fig. 3

SEM images of the DMCSRs containing the dye-doped PS spheres with diameters of 1.0 μm (a) and 3.2 μm (b). The dashed-line boxes indicate the free-standing areas.

Fig. 4
Fig. 4

Measured PL spectra for the dielectric resonator (a) and DMCSR (b) containing a dye-doped PS sphere with radius of r1 = 0.5 μm. (c) Total and decomposed scattering efficiency spectra of a dielectric resonator (r1 = 0.508 μm). (d) Total and decomposed absorption efficiency spectra of a DMCSR (r1 = 0.508 μm and t = 60 nm).

Fig. 5
Fig. 5

Measured PL spectra for the dielectric resonator (a) and DMCSR (b) containing a dye-doped PS sphere with radius of r2 = 1.6 μm. (c) Total and decomposed scattering efficiency spectra of a dielectric resonator (r2 = 1.6 μm). (d) Total and decomposed absorption efficiency spectra of a DMCSR (r2 = 1.6 μm and t = 60 nm).

Metrics