Abstract

Based on four-wave mixing (FWM) with an optical comb source (OCS), we experimentally demonstrate 26-way or 15-way wavelength multicasting of 10-Gb/s differential phase-shift keying (DPSK) data in a highly-nonlinear fiber (HNLF) or a silicon waveguide, respectively. The OCS provides multiple spectrally equidistant pump waves leading to a multitude of FWM products after mixing with the signal. We achieve error-free operation with power penalties less than 5.7 dB for the HNLF and 4.2 dB for the silicon waveguide, respectively.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide

Minhao Pu, Hao Hu, Hua Ji, Michael Galili, Leif K. Oxenløwe, Palle Jeppesen, Jørn M. Hvam, and Kresten Yvind
Opt. Express 19(24) 24448-24453 (2011)

All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror

Dawei Wang, Tee-Hiang Cheng, Yong-Kee Yeo, Jianguo Liu, Zhaowen Xu, Yixin Wang, and Gaoxi Xiao
Opt. Express 18(10) 10343-10353 (2010)

Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier

Jun Qin, Guo-Wei Lu, Takahide Sakamoto, Kouichi Akahane, Naokatsu Yamamoto, Danshi Wang, Cheng Wang, Hongxiang Wang, Min Zhang, Tetsuya Kawanishi, and Yuefeng Ji
Opt. Express 22(24) 29413-29423 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Malli, X. Zhang, and C. Qiao, “Benefits of multicasting in all-optical networks,” Proc. SPIE 3531, 209–220 (1998).
    [Crossref]
  2. B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
    [Crossref]
  3. J. He, S.-H. G. Chan, and D. H. K. Tsang, “Multicasting in WDM networks,” IEEE Comm. Surv. and Tutor. 4(1), 2–20 (2002).
    [Crossref]
  4. Y. Yang, “A class of interconnection networks for multicasting,” IEEE Trans. Comput. 47(8), 899–906 (1998).
    [Crossref]
  5. A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
    [Crossref]
  6. C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
    [Crossref]
  7. S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
    [Crossref]
  8. X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1441–1447 (2010).
    [Crossref]
  9. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting,” J. Lightwave Technol. 28(17), 2499–2511 (2010).
    [Crossref]
  10. G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photonics Technol. Lett. 18(1), 181–183 (2006).
    [Crossref]
  11. L. Xu, N. Chi, K. Yvind, L. Christiansen, L. Oxenløwe, J. Mørk, P. Jeppesen, and J. Hanberg, “7x 40 Gb/s base-rate RZ all-optical broadcasting utilizing an electroabsorption modulator,” Opt. Express 12(3), 416–420 (2004).
    [Crossref] [PubMed]
  12. K. Chow and C. Shu, “All-optical signal regeneration with wavelength multicasting at 6x10 Gb/s using a single electroabsorption modulator,” Opt. Express 12(13), 3050–3054 (2004).
    [Crossref] [PubMed]
  13. C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive all-optical wavelength multicasting by self-phase-modulation in a photonic-crystal fiber,” in Proceedings of CLEO2006, Long Beach, CA, May 2006, Paper CTuD4.
    [Crossref]
  14. A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18(17), 18047–18055 (2010).
    [Crossref] [PubMed]
  15. C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Scalable multicasting in one-pump parametric amplifier,” J. Lightwave Technol. 27(3), 356–363 (2009).
    [Crossref]
  16. M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide,” Opt. Express 19(24), 24448–24453 (2011).
    [Crossref] [PubMed]
  17. G. W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
    [Crossref] [PubMed]
  18. D. Wang, T.-H. Cheng, Y.-K. Yeo, J. Liu, Z. Xu, Y. Wang, and G. Xiao, “All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror,” Opt. Express 18(10), 10343–10353 (2010).
    [Crossref] [PubMed]
  19. C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photonics Technol. Lett. 21(14), 1002–1004 (2009).
    [Crossref]
  20. B. P.-P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
    [Crossref]
  21. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  22. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
    [Crossref] [PubMed]
  23. K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).
  24. Y. Yang, K. G. Petrillo, H.-F. Ting, J. B. Khurgin, A. B. Cooper, and M. A. Foster, “Experimental demonstration of coherent OCDMA using heterodyne detection,” Opt. Lett. 38(13), 2351–2353 (2013).
    [Crossref] [PubMed]
  25. E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
    [Crossref]
  26. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
    [Crossref] [PubMed]
  27. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [Crossref] [PubMed]
  28. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
    [Crossref] [PubMed]
  29. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  30. A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
    [Crossref] [PubMed]
  31. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]

2013 (2)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Y. Yang, K. G. Petrillo, H.-F. Ting, J. B. Khurgin, A. B. Cooper, and M. A. Foster, “Experimental demonstration of coherent OCDMA using heterodyne detection,” Opt. Lett. 38(13), 2351–2353 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (4)

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide,” Opt. Express 19(24), 24448–24453 (2011).
[Crossref] [PubMed]

B. P.-P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
[Crossref]

2010 (6)

2009 (3)

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photonics Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Scalable multicasting in one-pump parametric amplifier,” J. Lightwave Technol. 27(3), 356–363 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photonics Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

2004 (3)

2003 (1)

2002 (1)

J. He, S.-H. G. Chan, and D. H. K. Tsang, “Multicasting in WDM networks,” IEEE Comm. Surv. and Tutor. 4(1), 2–20 (2002).
[Crossref]

2000 (1)

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

1998 (2)

R. Malli, X. Zhang, and C. Qiao, “Benefits of multicasting in all-optical networks,” Proc. SPIE 3531, 209–220 (1998).
[Crossref]

Y. Yang, “A class of interconnection networks for multicasting,” IEEE Trans. Comput. 47(8), 899–906 (1998).
[Crossref]

Abedin, K. S.

Adleman, J. R.

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

Ahmed, N.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

Alic, N.

Almeida, V. R.

Andrekson, P. A.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Aparicio, J. M.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Aso, O.

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

Astar, W.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Bergman, K.

Biberman, A.

Bogoni, A.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1441–1447 (2010).
[Crossref]

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Bres, C.-S.

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Brès, C.-S.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photonics Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Scalable multicasting in one-pump parametric amplifier,” J. Lightwave Technol. 27(3), 356–363 (2009).
[Crossref]

Calabretta, N.

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photonics Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

Carter, G. M.

Chan, S.-H. G.

J. He, S.-H. G. Chan, and D. H. K. Tsang, “Multicasting in WDM networks,” IEEE Comm. Surv. and Tutor. 4(1), 2–20 (2002).
[Crossref]

Cheng, T.-H.

Chi, N.

Chitgarha, M. R.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

Chow, K.

Christiansen, L.

Ciaramella, E.

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photonics Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

Contestabile, G.

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photonics Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

Cooper, A. B.

Dadap, J. I.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Driscoll, J. B.

Elschner, R.

Fazal, I. M.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

Fejer, M. M.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Gajda, A.

Galili, M.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Green, W. M. J.

Hanberg, J.

Haney, M. W.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

He, J.

J. He, S.-H. G. Chan, and D. H. K. Tsang, “Multicasting in WDM networks,” IEEE Comm. Surv. and Tutor. 4(1), 2–20 (2002).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Hiroishi, J.

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

Hu, H.

Huynh, C. K.

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

Hvam, J. M.

Igarashi, K.

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

Jacobs, E. W.

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jazayerifar, M.

Jeppesen, P.

Ji, H.

Khaleghi, S.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

Khurgin, J. B.

Kuo, B. P. P.

Kuo, B. P.-P.

B. P.-P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
[Crossref]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photonics Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Kuroki, S.

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

Kvavle, J. M.

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

Langrock, C.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

Lee, B. G.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Lipson, M.

Liu, J.

Liu, X.

Lu, G. W.

Lundström, C.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Malli, R.

R. Malli, X. Zhang, and C. Qiao, “Benefits of multicasting in all-optical networks,” Proc. SPIE 3531, 209–220 (1998).
[Crossref]

Miyabe, R.

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

Miyazaki, T.

Mørk, J.

Moro, S.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Mukherjee, B.

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

Myslivets, E.

Namiki, S.

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

Nuccio, S. R.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1441–1447 (2010).
[Crossref]

Osgood, R. M.

Oxenløwe, L.

Oxenløwe, L. K.

Panepucci, R. R.

Petermann, K.

Petrillo, K. G.

Proietti, R.

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photonics Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

Pu, M.

Qiao, C.

R. Malli, X. Zhang, and C. Qiao, “Benefits of multicasting in all-optical networks,” Proc. SPIE 3531, 209–220 (1998).
[Crossref]

Radic, S.

E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
[Crossref] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
[Crossref] [PubMed]

B. P.-P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
[Crossref]

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photonics Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Scalable multicasting in one-pump parametric amplifier,” J. Lightwave Technol. 27(3), 356–363 (2009).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Richter, T.

Salem, R.

Scaffardi, M.

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1441–1447 (2010).
[Crossref]

Schubert, C.

Shu, C.

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Takahashi, M.

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Tian, H.

Tillack, B.

Ting, H.-F.

Tobioka, H.

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

Tong, Z.

Tsang, D. H. K.

J. He, S.-H. G. Chan, and D. H. K. Tsang, “Multicasting in WDM networks,” IEEE Comm. Surv. and Tutor. 4(1), 2–20 (2002).
[Crossref]

Tur, M.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

Turner, A. C.

Turner-Foster, A. C.

Vlasov, Y. A.

Wang, D.

Wang, J.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Wang, Y.

Wiberg, A. O. J.

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
[Crossref] [PubMed]

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photonics Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

Willner, A. E.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1441–1447 (2010).
[Crossref]

Winzer, G.

Wu, X.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1441–1447 (2010).
[Crossref]

Xiao, G.

Xu, L.

Xu, Z.

Yagi, T.

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

Yang, Y.

Yeo, Y.-K.

Yilmaz, O. F.

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1441–1447 (2010).
[Crossref]

Yvind, K.

Zhang, L.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Zhang, X.

R. Malli, X. Zhang, and C. Qiao, “Benefits of multicasting in all-optical networks,” Proc. SPIE 3531, 209–220 (1998).
[Crossref]

Zimmermann, L.

Zlatanovic, S.

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

Furukawa Rev. (1)

K. Igarashi, H. Tobioka, S. Kuroki, R. Miyabe, J. Hiroishi, M. Takahashi, T. Yagi, O. Aso, and S. Namiki, “A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains,” Furukawa Rev. 25, 9–12 (2004).

IEEE Comm. Surv. and Tutor. (1)

J. He, S.-H. G. Chan, and D. H. K. Tsang, “Multicasting in WDM networks,” IEEE Comm. Surv. and Tutor. 4(1), 2–20 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

X. Wu, A. Bogoni, S. R. Nuccio, O. F. Yilmaz, M. Scaffardi, and A. E. Willner, “High-speed optical WDM-to-TDM conversion using fiber nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1441–1447 (2010).
[Crossref]

IEEE Photonics J. (1)

S. Khaleghi, O. F. Yilmaz, M. R. Chitgarha, M. Tur, N. Ahmed, S. R. Nuccio, I. M. Fazal, X. Wu, M. W. Haney, C. Langrock, M. M. Fejer, and A. E. Willner, “High-speed correlation and equalization using a continuously tunable all-optical tapped delay line,” IEEE Photonics J. 4(4), 1220–1235 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self-seeded parametric amplifier,” IEEE Photonics Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C.-S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

C.-S. Bres, S. Zlatanovic, A. O. J. Wiberg, J. R. Adleman, C. K. Huynh, E. W. Jacobs, J. M. Kvavle, and S. Radic, “Parametric photonic channelized RF receiver,” IEEE Photonics Technol. Lett. 23(6), 344–346 (2011).
[Crossref]

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photonics Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

IEEE Trans. Comput. (1)

Y. Yang, “A class of interconnection networks for multicasting,” IEEE Trans. Comput. 47(8), 899–906 (1998).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Opt. Express (11)

E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
[Crossref] [PubMed]

A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express 18(17), 18047–18055 (2010).
[Crossref] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[Crossref] [PubMed]

A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010).
[Crossref] [PubMed]

A. Gajda, L. Zimmermann, M. Jazayerifar, G. Winzer, H. Tian, R. Elschner, T. Richter, C. Schubert, B. Tillack, and K. Petermann, “Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction,” Opt. Express 20(12), 13100–13107 (2012).
[Crossref] [PubMed]

M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide,” Opt. Express 19(24), 24448–24453 (2011).
[Crossref] [PubMed]

G. W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
[Crossref] [PubMed]

D. Wang, T.-H. Cheng, Y.-K. Yeo, J. Liu, Z. Xu, Y. Wang, and G. Xiao, “All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror,” Opt. Express 18(10), 10343–10353 (2010).
[Crossref] [PubMed]

L. Xu, N. Chi, K. Yvind, L. Christiansen, L. Oxenløwe, J. Mørk, P. Jeppesen, and J. Hanberg, “7x 40 Gb/s base-rate RZ all-optical broadcasting utilizing an electroabsorption modulator,” Opt. Express 12(3), 416–420 (2004).
[Crossref] [PubMed]

K. Chow and C. Shu, “All-optical signal regeneration with wavelength multicasting at 6x10 Gb/s using a single electroabsorption modulator,” Opt. Express 12(13), 3050–3054 (2004).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

R. Malli, X. Zhang, and C. Qiao, “Benefits of multicasting in all-optical networks,” Proc. SPIE 3531, 209–220 (1998).
[Crossref]

Other (1)

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive all-optical wavelength multicasting by self-phase-modulation in a photonic-crystal fiber,” in Proceedings of CLEO2006, Long Beach, CA, May 2006, Paper CTuD4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

An illustration of spectrally coincident FWM products. Given three uniformly-spaced pumps (in green) and an input signal (in blue), nine multicast replicas (in red) carrying the original input signal are generated. Among these replicas, each of a, b, and c consists of multiple FWM products at a coincident frequency. For example, two FWM products, ω13s (dash) and ω22s (solid), both contribute to the replica c. If the pump waves are provided by independent free-running lasers, then the multiple FWM pathways will lead to noisy interference and thus poor multicast signal quality.

Fig. 2
Fig. 2

Experimental setup of the proposed wavelength multicasting scheme using a fiber-based OCS. OCS: optical comb source, OBPF: optical band-pass filter, EDFA: erbium-doped fiber amplifier, ISO: optical isolator, CW LD: continuous-wave laser diode, PC: polarization controller, EOM: electro-optic modulator, HNLF: highly-nonlinear fiber, Silicon WG: silicon waveguide, VOA: variable optical attenuator, OSA: optical spectrum analyzer, DLI: delay interferometer, and BPD: balanced photodetector. For BER measurement the received power is monitored immediately at the 10% port of a 90/10 splitter and adjusted to report the power in the 90% arm.

Fig. 3
Fig. 3

Measured optical spectra immediately after (a) the OCS. The six adjacent comb lines within the dashed region around 1550 nm are then isolated and used as pump sources to mix with a data-carrying signal for the multicasting experiment in (b) the 30-m long HNLF, and (c) the 15-mm long silicon waveguide. In both spectra of the HNLF and the silicon waveguide, multicast replicas are generated on both sides of the central comb pumps. Note: the wavelength spacing for all spectra is 0.4 nm. The resolution bandwidth of the optical spectra is 0.05 nm.

Fig. 4
Fig. 4

BER validation, record of power penalty at BER = 10−9, and conversion efficiency for the wavelength multicasting of 10-Gb/s DPSK data using (a), (c), (e) 30-m long HNLF, and (b), (d), (f) 15-mm long silicon waveguide. In (e) and (f), the input signal power is 52.5 mW for HNLF and 7.5 mW for silicon waveguide, respectively. Inset: eye diagram of the 10-Gb/s back-to-back DPSK data.

Fig. 5
Fig. 5

Eye diagrams of 10-Gb/s DPSK data for select isolated multicast channels using (a) 30-m long HNLF and (b) 15-mm long silicon waveguide. All eye diagrams are taken at a BER of 10−9.

Metrics