Abstract

Gold nanoflowers with feature sizes ranging from several tenths to several hundred nanometers were synthesized by using the one-pot method. They were formed by the self-organization of gold nanoparticles of several nanometers and exhibited broad extinction spectra in the near infrared spectral range. Randomly distributed hot spots originating from the strongly localized modes were generated in gold nanoflowers and their appearances exhibited strong dependences on both the polarization and wavelength of the excitation light. Under the excitation of femtosecond laser pulses, such hot spots emitted efficient hot luminescence spanning the visible to near infrared spectral range. Distinct from the hot luminescence of single hot spots formed on rough gold and silver surfaces, the hot luminescence from gold nanoflowers composed of a large number of hot spots exhibited excitation-intensity dependence quite similar to the emission spectrum. It was demonstrated that the polarization- and wavelength-dependent hot luminescence of gold nanoflowers can be utilized to realize optical data storage with high density and low energy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inorganic nanoparticles for optical bioimaging

Daniel Jaque, Cyrille Richard, Bruno Viana, Kohei Soga, Xiaogang Liu, and Jose García Solé
Adv. Opt. Photon. 8(1) 1-103 (2016)

Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure

Loan Le Thi Ngoc, Justyna Wiedemair, Albert van den Berg, and Edwin T. Carlen
Opt. Express 23(5) 5547-5564 (2015)

Enhanced upconversion quantum yield near spherical gold nanoparticles – a comprehensive simulation based analysis

Stefan Fischer, Deepu Kumar, Florian Hallermann, Gero von Plessen, and Jan Christoph Goldschmidt
Opt. Express 24(6) A460-A475 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Nanophotonics (John Wiley & Sons, 2004).
  2. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
    [Crossref] [PubMed]
  3. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  4. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano Lett. 7(6), 1591–1597 (2007).
    [Crossref] [PubMed]
  5. X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
    [Crossref] [PubMed]
  6. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
    [Crossref] [PubMed]
  7. A. R. Tao, S. Habas, and P. Yang, “Shape Control of Colloidal Metal Nanocrystals,” Small 4(3), 310–325 (2008).
    [Crossref]
  8. S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
    [Crossref] [PubMed]
  9. T. K. Sau and A. L. Rogach, “Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control,” Adv. Mater. 22(16), 1781–1804 (2010).
    [Crossref] [PubMed]
  10. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
    [Crossref] [PubMed]
  11. S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater. 6(7), 557–562 (2007).
    [Crossref] [PubMed]
  12. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
    [Crossref]
  13. S. Link and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
    [Crossref]
  14. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
    [Crossref]
  15. J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on Gold Nanorods Doped in a Silica Sol–Gel Matrix and Its Application to High-Density Optical Data Storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
    [Crossref]
  16. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  17. X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
    [Crossref] [PubMed]
  18. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [Crossref] [PubMed]
  19. J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104(25), 251110 (2014).
    [Crossref]
  20. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  21. K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
    [Crossref] [PubMed]
  22. P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  23. W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref] [PubMed]
  24. L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
    [Crossref]
  25. G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
    [Crossref]
  26. P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
    [Crossref] [PubMed]
  27. L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
    [Crossref] [PubMed]
  28. J.-X. Li, Y. Xu, Q.-F. Dai, S. Lan, and S.-L. Tie, “Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
    [Crossref]
  29. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
    [Crossref] [PubMed]
  30. K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
    [Crossref] [PubMed]
  31. X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
    [Crossref] [PubMed]
  32. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
    [Crossref]
  33. T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films,” Phys. Rev. Lett. 115(6), 067403 (2015).
    [Crossref] [PubMed]
  34. K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
    [Crossref]
  35. X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
    [Crossref] [PubMed]
  36. M. A. Boles, M. Engel, and D. V. Talapin, “Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials,” Chem. Rev. 116(18), 11220–11289 (2016).
    [Crossref] [PubMed]
  37. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
    [Crossref] [PubMed]
  38. S. Watanabe, Y. Mino, Y. Ichikawa, and M. T. Miyahara, “Spontaneous Formation of Cluster Array of Gold Particles by Convective Self-Assembly,” Langmuir 28(36), 12982–12988 (2012).
    [Crossref] [PubMed]
  39. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [Crossref]
  40. P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  41. S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
    [Crossref] [PubMed]
  42. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
    [Crossref] [PubMed]
  43. D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, “Surface plasmon effects on two photon luminescence of gold nanorods,” Opt. Express 17(14), 11350–11359 (2009).
    [Crossref] [PubMed]
  44. M. L. Weber, J. P. Litz, D. J. Masiello, and K. A. Willets, “Super-Resolution Imaging Reveals a Difference Between SERS and Luminescence Centroids,” ACS Nano 6(2), 1839–1848 (2012).
    [Crossref] [PubMed]
  45. M. J. Walter, N. J. Borys, G. Gaefke, S. Höger, and J. M. Lupton, “Spatial Anticorrelation between Nonlinear White-Light Generation and Single Molecule Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 130(50), 16830–16831 (2008).
    [Crossref] [PubMed]
  46. D. Sivun, C. Vidal, B. Munkhbat, N. Arnold, T. A. Klar, and C. Hrelescu, “Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity,” Nano Lett. 16(11), 7203–7209 (2016).
    [Crossref] [PubMed]

2016 (4)

J.-X. Li, Y. Xu, Q.-F. Dai, S. Lan, and S.-L. Tie, “Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
[Crossref]

M. A. Boles, M. Engel, and D. V. Talapin, “Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials,” Chem. Rev. 116(18), 11220–11289 (2016).
[Crossref] [PubMed]

D. Sivun, C. Vidal, B. Munkhbat, N. Arnold, T. A. Klar, and C. Hrelescu, “Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity,” Nano Lett. 16(11), 7203–7209 (2016).
[Crossref] [PubMed]

2015 (1)

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

2014 (2)

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104(25), 251110 (2014).
[Crossref]

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

2013 (4)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

2012 (5)

S. Watanabe, Y. Mino, Y. Ichikawa, and M. T. Miyahara, “Spontaneous Formation of Cluster Array of Gold Particles by Convective Self-Assembly,” Langmuir 28(36), 12982–12988 (2012).
[Crossref] [PubMed]

M. L. Weber, J. P. Litz, D. J. Masiello, and K. A. Willets, “Super-Resolution Imaging Reveals a Difference Between SERS and Luminescence Centroids,” ACS Nano 6(2), 1839–1848 (2012).
[Crossref] [PubMed]

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

2011 (2)

G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
[Crossref]

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

2010 (4)

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

T. K. Sau and A. L. Rogach, “Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control,” Adv. Mater. 22(16), 1781–1804 (2010).
[Crossref] [PubMed]

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

2009 (3)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, “Surface plasmon effects on two photon luminescence of gold nanorods,” Opt. Express 17(14), 11350–11359 (2009).
[Crossref] [PubMed]

2008 (4)

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

M. J. Walter, N. J. Borys, G. Gaefke, S. Höger, and J. M. Lupton, “Spatial Anticorrelation between Nonlinear White-Light Generation and Single Molecule Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 130(50), 16830–16831 (2008).
[Crossref] [PubMed]

A. R. Tao, S. Habas, and P. Yang, “Shape Control of Colloidal Metal Nanocrystals,” Small 4(3), 310–325 (2008).
[Crossref]

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[Crossref] [PubMed]

2007 (4)

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on Gold Nanorods Doped in a Silica Sol–Gel Matrix and Its Application to High-Density Optical Data Storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[Crossref]

S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater. 6(7), 557–562 (2007).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

2005 (4)

S. Link and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
[Crossref]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2004 (2)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

2002 (1)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

2000 (1)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1996 (1)

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Ansari, D. O.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Arbouet, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Arnold, N.

D. Sivun, C. Vidal, B. Munkhbat, N. Arnold, T. A. Klar, and C. Hrelescu, “Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity,” Nano Lett. 16(11), 7203–7209 (2016).
[Crossref] [PubMed]

Astruc, D.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

Au, L.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[Crossref] [PubMed]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Bange, S.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Boey, F.

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

Boles, M. A.

M. A. Boles, M. Engel, and D. V. Talapin, “Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials,” Chem. Rev. 116(18), 11220–11289 (2016).
[Crossref] [PubMed]

Borys, N. J.

M. J. Walter, N. J. Borys, G. Gaefke, S. Höger, and J. M. Lupton, “Spatial Anticorrelation between Nonlinear White-Light Generation and Single Molecule Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 130(50), 16830–16831 (2008).
[Crossref] [PubMed]

Brida, D.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Bullen, C.

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on Gold Nanorods Doped in a Silica Sol–Gel Matrix and Its Application to High-Density Optical Data Storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[Crossref]

Cao, Y.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Celebrano, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Cerullo, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Chen, G. Z.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Chen, H.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Chen, J.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[Crossref] [PubMed]

Chen, L.

L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Cheng, J. X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Chon, J. W.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Chon, J. W. M.

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on Gold Nanorods Doped in a Silica Sol–Gel Matrix and Its Application to High-Density Optical Data Storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cobley, C. M.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[Crossref] [PubMed]

Dai, Q.-F.

J.-X. Li, Y. Xu, Q.-F. Dai, S. Lan, and S.-L. Tie, “Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

Deng, H.-D.

L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Dujardin, E.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Duò, L.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
[Crossref]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Engel, M.

M. A. Boles, M. Engel, and D. V. Talapin, “Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials,” Chem. Rev. 116(18), 11220–11289 (2016).
[Crossref] [PubMed]

Fan, S.

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104(25), 251110 (2014).
[Crossref]

Fang, C.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Finazzi, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Freeman, R. G.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Furst, E. M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Gaefke, G.

M. J. Walter, N. J. Borys, G. Gaefke, S. Höger, and J. M. Lupton, “Spatial Anticorrelation between Nonlinear White-Light Generation and Single Molecule Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 130(50), 16830–16831 (2008).
[Crossref] [PubMed]

Gan, C. L.

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Girard, C.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Glotzer, S. C.

S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater. 6(7), 557–562 (2007).
[Crossref] [PubMed]

Gong, Q.

G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
[Crossref]

Grancini, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Grzelczak, M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Gu, M.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on Gold Nanorods Doped in a Silica Sol–Gel Matrix and Its Application to High-Density Optical Data Storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[Crossref]

Habas, S.

A. R. Tao, S. Habas, and P. Yang, “Shape Control of Colloidal Metal Nanocrystals,” Small 4(3), 310–325 (2008).
[Crossref]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Haug, T.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Henry, A.-I.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Höger, S.

M. J. Walter, N. J. Borys, G. Gaefke, S. Höger, and J. M. Lupton, “Spatial Anticorrelation between Nonlinear White-Light Generation and Single Molecule Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 130(50), 16830–16831 (2008).
[Crossref] [PubMed]

Hou, L.

G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
[Crossref]

Hrelescu, C.

D. Sivun, C. Vidal, B. Munkhbat, N. Arnold, T. A. Klar, and C. Hrelescu, “Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity,” Nano Lett. 16(11), 7203–7209 (2016).
[Crossref] [PubMed]

Hsu, F.-Y.

Hu, S.

K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
[Crossref]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Huang, X.

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

Huang, Y.

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Ichikawa, Y.

S. Watanabe, Y. Mino, Y. Ichikawa, and M. T. Miyahara, “Spontaneous Formation of Cluster Array of Gold Particles by Convective Self-Assembly,” Langmuir 28(36), 12982–12988 (2012).
[Crossref] [PubMed]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref] [PubMed]

Jiang, C.

X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Jiang, X.-F.

X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Klar, T. A.

D. Sivun, C. Vidal, B. Munkhbat, N. Arnold, T. A. Klar, and C. Hrelescu, “Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity,” Nano Lett. 16(11), 7203–7209 (2016).
[Crossref] [PubMed]

Klemm, P.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

Lan, S.

J.-X. Li, Y. Xu, Q.-F. Dai, S. Lan, and S.-L. Tie, “Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Lan, T. H.

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

Letsinger, R. L.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Li, G.-C.

L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Li, J.-X.

J.-X. Li, Y. Xu, Q.-F. Dai, S. Lan, and S.-L. Tie, “Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

Li, S.

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

Li, W.

G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
[Crossref]

Li, X.

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

Lin, C.-W.

Lin, H. Q.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Lin, K.-Q.

K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
[Crossref]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Litz, J. P.

M. L. Weber, J. P. Litz, D. J. Masiello, and K. A. Willets, “Super-Resolution Imaging Reveals a Difference Between SERS and Luminescence Centroids,” ACS Nano 6(2), 1839–1848 (2012).
[Crossref] [PubMed]

Liu, G.-Y.

L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Liu, J.

G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
[Crossref]

Liu, V.

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104(25), 251110 (2014).
[Crossref]

Liz-Marzán, L. M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Lu, G.

G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
[Crossref]

Lu, X.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[Crossref] [PubMed]

Lupton, J. M.

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

M. J. Walter, N. J. Borys, G. Gaefke, S. Höger, and J. M. Lupton, “Spatial Anticorrelation between Nonlinear White-Light Generation and Single Molecule Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 130(50), 16830–16831 (2008).
[Crossref] [PubMed]

Man, Y. C.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Martin, O. J.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Marty, R.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Masiello, D. J.

M. L. Weber, J. P. Litz, D. J. Masiello, and K. A. Willets, “Super-Resolution Imaging Reveals a Difference Between SERS and Luminescence Centroids,” ACS Nano 6(2), 1839–1848 (2012).
[Crossref] [PubMed]

Mátéfi-Tempfli, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Mátéfi-Tempfli, S.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

McMahon, J. M.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Mino, Y.

S. Watanabe, Y. Mino, Y. Ichikawa, and M. T. Miyahara, “Spontaneous Formation of Cluster Array of Gold Particles by Convective Self-Assembly,” Langmuir 28(36), 12982–12988 (2012).
[Crossref] [PubMed]

Mirkin, C. A.

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Miyahara, M. T.

S. Watanabe, Y. Mino, Y. Ichikawa, and M. T. Miyahara, “Spontaneous Formation of Cluster Array of Gold Particles by Convective Self-Assembly,” Langmuir 28(36), 12982–12988 (2012).
[Crossref] [PubMed]

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Mucic, R. C.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Munkhbat, B.

D. Sivun, C. Vidal, B. Munkhbat, N. Arnold, T. A. Klar, and C. Hrelescu, “Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity,” Nano Lett. 16(11), 7203–7209 (2016).
[Crossref] [PubMed]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref] [PubMed]

Natan, M. J.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Nie, S.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref] [PubMed]

Orrit, M.

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

Pan, Y.

X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Paulo, P. M.

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

Peng, X. H.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Perriat, P.

G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
[Crossref]

Piotti, M. E.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Piper, J. R.

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104(25), 251110 (2014).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

Qian, X.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Ren, B.

K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
[Crossref]

Rogach, A. L.

T. K. Sau and A. L. Rogach, “Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control,” Adv. Mater. 22(16), 1781–1804 (2010).
[Crossref] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Sau, T. K.

T. K. Sau and A. L. Rogach, “Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control,” Adv. Mater. 22(16), 1781–1804 (2010).
[Crossref] [PubMed]

Savoini, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Schatz, G. C.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Shao, L.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Sharma, J.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Shin, D. M.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Sivun, D.

D. Sivun, C. Vidal, B. Munkhbat, N. Arnold, T. A. Klar, and C. Hrelescu, “Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity,” Nano Lett. 16(11), 7203–7209 (2016).
[Crossref] [PubMed]

Skrabalak, S. E.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[Crossref] [PubMed]

Solomon, M. J.

S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater. 6(7), 557–562 (2007).
[Crossref] [PubMed]

Storhoff, J. J.

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Sun, J.-J.

K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
[Crossref]

Sun, Y.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[Crossref] [PubMed]

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Talapin, D. V.

M. A. Boles, M. Engel, and D. V. Talapin, “Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials,” Chem. Rev. 116(18), 11220–11289 (2016).
[Crossref] [PubMed]

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Tao, A. R.

A. R. Tao, S. Habas, and P. Yang, “Shape Control of Colloidal Metal Nanocrystals,” Small 4(3), 310–325 (2008).
[Crossref]

Teulle, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Tie, S.-L.

J.-X. Li, Y. Xu, Q.-F. Dai, S. Lan, and S.-L. Tie, “Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

Tien, C. H.

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

Valley, N.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Van Duyne, R. P.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Venkatesan, T.

X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Vermant, J.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Viarbitskaya, S.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Vidal, C.

D. Sivun, C. Vidal, B. Munkhbat, N. Arnold, T. A. Klar, and C. Hrelescu, “Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity,” Nano Lett. 16(11), 7203–7209 (2016).
[Crossref] [PubMed]

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Walter, M. J.

M. J. Walter, N. J. Borys, G. Gaefke, S. Höger, and J. M. Lupton, “Spatial Anticorrelation between Nonlinear White-Light Generation and Single Molecule Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 130(50), 16830–16831 (2008).
[Crossref] [PubMed]

Wang, D.-S.

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Wang, J.

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

Wang, M. D.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Wang, X.

K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
[Crossref]

Watanabe, S.

S. Watanabe, Y. Mino, Y. Ichikawa, and M. T. Miyahara, “Spontaneous Formation of Cluster Array of Gold Particles by Convective Self-Assembly,” Langmuir 28(36), 12982–12988 (2012).
[Crossref] [PubMed]

Weber, M. L.

M. L. Weber, J. P. Litz, D. J. Masiello, and K. A. Willets, “Super-Resolution Imaging Reveals a Difference Between SERS and Luminescence Centroids,” ACS Nano 6(2), 1839–1848 (2012).
[Crossref] [PubMed]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Willets, K. A.

M. L. Weber, J. P. Litz, D. J. Masiello, and K. A. Willets, “Super-Resolution Imaging Reveals a Difference Between SERS and Luminescence Centroids,” ACS Nano 6(2), 1839–1848 (2012).
[Crossref] [PubMed]

Wu, S.

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

Wustholz, K. L.

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

Xia, Y.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[Crossref] [PubMed]

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Xu, Q.-H.

X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Xu, Y.

J.-X. Li, Y. Xu, Q.-F. Dai, S. Lan, and S.-L. Tie, “Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

Yang, L.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Yang, P.

A. R. Tao, S. Habas, and P. Yang, “Shape Control of Colloidal Metal Nanocrystals,” Small 4(3), 310–325 (2008).
[Crossref]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

Yi, J.

K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
[Crossref]

Yin-Goen, Q.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Young, A. N.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Yuan, P.

X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Zhang, H.

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

Zhang, T.

G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
[Crossref]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Zhao, T.

X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Zheng, J.-T.

K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
[Crossref]

Zhou, X.

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

Zijlstra, P.

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on Gold Nanorods Doped in a Silica Sol–Gel Matrix and Its Application to High-Density Optical Data Storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[Crossref]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold Nanocages: Synthesis, Properties, and Applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[Crossref] [PubMed]

ACS Nano (2)

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed Self-Assembly of Nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

M. L. Weber, J. P. Litz, D. J. Masiello, and K. A. Willets, “Super-Resolution Imaging Reveals a Difference Between SERS and Luminescence Centroids,” ACS Nano 6(2), 1839–1848 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

K.-Q. Lin, J. Yi, S. Hu, J.-J. Sun, J.-T. Zheng, X. Wang, and B. Ren, “Intraband Hot-Electron Photoluminescence from Single Silver Nanorods,” ACS Photonics 3(7), 1248–1255 (2016).
[Crossref]

Adv. Funct. Mater. (1)

J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on Gold Nanorods Doped in a Silica Sol–Gel Matrix and Its Application to High-Density Optical Data Storage,” Adv. Funct. Mater. 17(6), 875–880 (2007).
[Crossref]

Adv. Mater. (1)

T. K. Sau and A. L. Rogach, “Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control,” Adv. Mater. 22(16), 1781–1804 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. R. Piper, V. Liu, and S. Fan, “Total absorption by degenerate critical coupling,” Appl. Phys. Lett. 104(25), 251110 (2014).
[Crossref]

Chem. Phys. Lett. (1)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Chem. Rev. (2)

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[Crossref] [PubMed]

M. A. Boles, M. Engel, and D. V. Talapin, “Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials,” Chem. Rev. 116(18), 11220–11289 (2016).
[Crossref] [PubMed]

IEEE Trans. Antenn. Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[Crossref]

J. Am. Chem. Soc. (2)

M. J. Walter, N. J. Borys, G. Gaefke, S. Höger, and J. M. Lupton, “Spatial Anticorrelation between Nonlinear White-Light Generation and Single Molecule Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 130(50), 16830–16831 (2008).
[Crossref] [PubMed]

K. L. Wustholz, A.-I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P. Van Duyne, “Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy,” J. Am. Chem. Soc. 132(31), 10903–10910 (2010).
[Crossref] [PubMed]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

K. Imura, T. Nagahara, and H. Okamoto, “Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[Crossref] [PubMed]

S. Link and M. A. El-Sayed, “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant,” J. Phys. Chem. B 109(20), 10531–10532 (2005).
[Crossref]

J. Phys. Chem. C (2)

L. Chen, G.-C. Li, G.-Y. Liu, Q.-F. Dai, S. Lan, S.-L. Tie, and H.-D. Deng, “Sensing the Moving Direction, Position, Size, and Material Type of Nanoparticles with the Two-Photon-Induced Luminescence of a Single Gold Nanorod,” J. Phys. Chem. C 117(39), 20146–20153 (2013).
[Crossref]

G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, and Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods,” J. Phys. Chem. C 115(46), 22877–22885 (2011).
[Crossref]

J. Phys. Chem. Lett. (1)

X.-F. Jiang, Y. Pan, C. Jiang, T. Zhao, P. Yuan, T. Venkatesan, and Q.-H. Xu, “Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy,” J. Phys. Chem. Lett. 4(10), 1634–1638 (2013).
[Crossref] [PubMed]

Langmuir (1)

S. Watanabe, Y. Mino, Y. Ichikawa, and M. T. Miyahara, “Spontaneous Formation of Cluster Array of Gold Particles by Convective Self-Assembly,” Langmuir 28(36), 12982–12988 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

J.-X. Li, Y. Xu, Q.-F. Dai, S. Lan, and S.-L. Tie, “Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling,” Laser Photonics Rev. 10(5), 826–834 (2016).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Light Sci. Appl. (1)

M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light Sci. Appl. 3(5), e177 (2014).
[Crossref]

Nano Lett. (4)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano Lett. 7(6), 1591–1597 (2007).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

L. Shao, C. Fang, H. Chen, Y. C. Man, J. Wang, and H. Q. Lin, “Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres,” Nano Lett. 12(3), 1424–1430 (2012).
[Crossref] [PubMed]

D. Sivun, C. Vidal, B. Munkhbat, N. Arnold, T. A. Klar, and C. Hrelescu, “Anticorrelation of Photoluminescence from Gold Nanoparticle Dimers with Hot-Spot Intensity,” Nano Lett. 16(11), 7203–7209 (2016).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26(1), 83–90 (2007).
[Crossref] [PubMed]

Nat. Commun. (2)

X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, and H. Zhang, “Synthesis of hexagonal close-packed gold nanostructures,” Nat. Commun. 2, 292 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nat. Mater. 6(7), 557–562 (2007).
[Crossref] [PubMed]

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12(5), 426–432 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

P. Zijlstra, P. M. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7(6), 379–382 (2012).
[Crossref] [PubMed]

Nature (2)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature 382(6592), 607–609 (1996).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constant of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[Crossref]

Phys. Rev. Lett. (2)

T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films,” Phys. Rev. Lett. 115(6), 067403 (2015).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Science (3)

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Small (1)

A. R. Tao, S. Habas, and P. Yang, “Shape Control of Colloidal Metal Nanocrystals,” Small 4(3), 310–325 (2008).
[Crossref]

Other (1)

P. N. Prasad, Nanophotonics (John Wiley & Sons, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

TEM image of GNFs. The magnified image and electron diffraction pattern for a typical GNF are provided in the insets.

Fig. 2
Fig. 2

Extinction spectrum of GNFs dispersed in water.

Fig. 3
Fig. 3

Extinction (Qext), absorption (Qabs) and scattering (Qsca) spectra of a typical GNF calculated for an incident light with polarization angles of (a) 0° and (b) 90°.

Fig. 4
Fig. 4

Electric field distribution on the GNF calculated for an incident light at 800 nm with polarization angles of (a) 0° and (b) 90°, respectively. (c) and (d) show the electric field distributions of the same GNF calculated for an incident light at 750 nm with polarization angles of 0° and 90°, respectively. In each case, the hot spots with top five enhancement factors for electric field are enclosed by dashed circles and marked by numbers of 1, 2, 3, 4, and 5, respectively.

Fig. 5
Fig. 5

Transmission spectrum measured at different locations of the GNF-PVA film whose picture is shown in the inset.

Fig. 6
Fig. 6

(a) Hot luminescence spectra of the GNF-PVA film measured at different pulse energies. (b) Hot luminescence spectra measured at pulse energy of 3.3 pJ and different times. (c) Dependence of the luminescence intensity on the excitation pulse energy plotted in a double-logarithmic coordinate for two photon energies. (d) Slopes derived from the dependence of the luminescence intensity on the excitation pulse energy shown in (a) at different photon energies

Fig. 7
Fig. 7

Up-converted hot luminescence of the GNF-PVA film measured at the same pulse energy of 9.9 pJ under different excitation wavelengths.

Fig. 8
Fig. 8

Patterns recorded and extracted by using (a) horizontally- and (b) vertically-polarized fs laser light at 800 nm. The pulse energies used for data recording and read out were 9.9 and 2.5 pJ, respectively. The statistics of the luminescence intensities of all the pixels for the two patterns shown in (a) and (b) are presented in (c) and (d), respectively. The correlation coefficients (C) and contrasts (R) calculated for the two extracted patterns are also provided.

Fig. 9
Fig. 9

Morphologies of the (a) left-up and (b) right-bottom corners of the GNF-PVA film after the recording and readout processes.

Fig. 10
Fig. 10

Patterns recorded and extracted by using fs laser light with a wavelength of 800 nm and polarization angles of (a) 0°, (b) 60°, and (c) 120°, respectively. The pulse energies used for recording and readout were 2.6 and 0.65 pJ, respectively.

Fig. 11
Fig. 11

Patterns recorded and extracted by using a horizontally-polarized fs laser light with wavelengths of (a) 800 nm and (b) 760 nm, respectively. The pulse energies used for recording and readout were 3.3 and 0.8 pJ, respectively

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C= m n ( A mn A ¯ )( B mn B ¯ ) [ ( A mn A ¯ ) 2 ][ ( B mn B ¯ ) 2 ]

Metrics