Abstract

We propose and demonstrate a novel optical frequency comb (OFC) based microwave photonic filter which is able to realize arbitrary filtering shape with linear phase response. The shape of filter response is software programmable using finite impulse response (FIR) filter design method. By shaping the OFC spectrum using a programmable waveshaper, we can realize designed amplitude of FIR taps. Positive and negative sign of FIR taps are achieved by balanced photo-detection. The double sideband (DSB) modulation and symmetric distribution of filter taps are used to maintain the linear phase condition. In the experiment, we realize a fully programmable filter in the range from DC to 13.88 GHz. Four basic types of filters (lowpass, highpass, bandpass and bandstop) with different bandwidths, cut-off frequencies and central frequencies are generated. Also a triple-passband filter is realized in our experiment. To the best of our knowledge, it is the first demonstration of a programmable multiple passband MPF with linear phase response. The experiment shows good agreement with the theoretical result.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microwave photonic bandstop filter with wide tunability and adjustable bandwidth

Wei Li, Chengwu Yang, Ling Wang, Zhilin Yuan, Jianguo Liu, Ming Li, and Ninghua Zhu
Opt. Express 23(26) 33579-33586 (2015)

Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses

Xiaoxiao Xue, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Opt. Express 20(24) 26929-26934 (2012)

An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter

Fan Jiang, Jia Haur Wong, Huy Quoc Lam, Junqiang Zhou, Sheel Aditya, Peng Huei Lim, Kenneth Eng Kian Lee, Perry Ping Shum, and Xinliang Zhang
Opt. Express 21(14) 16381-16389 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  2. R. A. Minasian, “Photonic signal processing of microwave signal,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [Crossref]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  4. D. Dolfi, “New trends in optoelectronics for radar, EW and communication systems,” in IEEE International Topical Meeting on Microwave Photonics (2011).
  5. B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
    [Crossref]
  6. E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
    [Crossref] [PubMed]
  7. J. Liu, N. Guo, Z. Li, C. Yu, and C. Lu, “Ultrahigh-Q microwave photonic filter with tunable Q value utilizing cascaded optical-electrical feedback loops,” Opt. Lett. 38(21), 4304–4307 (2013).
    [Crossref] [PubMed]
  8. J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
    [Crossref]
  9. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
    [Crossref]
  10. Y. Zhang and S. Pan, “Tunable multitap microwave photonic filter with all complex coefficients,” Opt. Lett. 38(5), 802–804 (2013).
    [Crossref] [PubMed]
  11. J. P. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photonics Technol. Lett. 19(9), 644–646 (2007).
    [Crossref]
  12. Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photonics Technol. Lett. 20(2), 78–80 (2008).
    [Crossref]
  13. S. C. Chan, Q. Liu, Z. Wang, and K. S. Chiang, “Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning,” Opt. Express 19(13), 12045–12052 (2011).
    [Crossref] [PubMed]
  14. M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
    [Crossref]
  15. F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
    [Crossref] [PubMed]
  16. J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
    [Crossref]
  17. J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
    [Crossref]
  18. Y. Yan and J. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photonics Technol. Lett. 19(19), 1472–1474 (2007).
    [Crossref]
  19. V. Borja, L. C. Juan, and M. Javier, “Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media,” in IEEE International Topical Meeting on Microwave Photonics (2005).
  20. N. You and R. A. Minasian, “Synthesis of WDM grating-based optical microwave filter with arbitrary impulse response,” in International Topical Meeting on Microwave Photonics (MWP, 1999), pp. 223–226.
    [Crossref]
  21. Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express 16(7), 4713–4718 (2008).
    [Crossref] [PubMed]
  22. S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications tomicrowave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
    [Crossref]
  23. F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
    [Crossref]
  24. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
    [Crossref] [PubMed]
  25. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
    [Crossref] [PubMed]
  26. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
    [Crossref] [PubMed]
  27. J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
    [Crossref] [PubMed]
  28. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
    [Crossref]
  29. J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
    [Crossref]
  30. J. Mora, L. R. Chen, and J. Capmany, “Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities,” J. Lightwave Technol. 26(15), 2663–2670 (2008).
    [Crossref]
  31. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
    [Crossref]
  32. D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
    [Crossref]
  33. J. H. Lee, Y. M. Chang, Y.-G. Han, S. B. Lee, and H. Y. Chung, “Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous-wave, incoherent supercontinuum source,” Appl. Opt. 46(22), 5158–5167 (2007).
    [Crossref] [PubMed]
  34. Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
    [Crossref]
  35. L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
    [Crossref]
  36. X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
    [Crossref]
  37. F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
    [Crossref]
  38. D. Sridhar, “Efficient OFDM PAPR reduction method using linear phase variation,” in International Journal of Electronics Communication & Computer Engineering (2011).
  39. G. Venanzoni, A. Morini, and M. Farina, “Practical design of a high power L-band linear phase filter for radar applications,” Microw. Opt. Technol. Lett. 53(12), 2717–2721 (2011).
    [Crossref]
  40. C. Wang and J. Yao, “A nonuniformly space microwave photonic filter using a spatially discrete chirped FBG,” IEEE Photonics Technol. Lett. 25(19), 1889–1892 (2013).
    [Crossref]
  41. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
    [Crossref]
  42. R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
    [Crossref] [PubMed]
  43. P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
    [Crossref] [PubMed]
  44. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
    [Crossref] [PubMed]
  45. J. Wang, Y. Xuan, A. J. Metcalf, P. Wang, X. Xue, D. E. Leaird, A. M. Weiner, and M. Qi, A multi-channel thermally reconfigurable SiN spectral shaper,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM3G.4.
  46. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. Tom, and A. M. Weiner, Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” in CLEO: 2011 - Laser Science to Photonic Applications (OSA, 2011).
  47. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  48. T. Kippenberg, “Microresonator-based optical frequency combs,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3M.1.
    [Crossref]
  49. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19(15), 14233–14239 (2011).
    [Crossref] [PubMed]
  50. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
    [Crossref]
  51. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
    [Crossref]

2015 (2)

Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

2014 (3)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
[Crossref]

2013 (7)

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

Y. Zhang and S. Pan, “Tunable multitap microwave photonic filter with all complex coefficients,” Opt. Lett. 38(5), 802–804 (2013).
[Crossref] [PubMed]

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]

J. Liu, N. Guo, Z. Li, C. Yu, and C. Lu, “Ultrahigh-Q microwave photonic filter with tunable Q value utilizing cascaded optical-electrical feedback loops,” Opt. Lett. 38(21), 4304–4307 (2013).
[Crossref] [PubMed]

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]

C. Wang and J. Yao, “A nonuniformly space microwave photonic filter using a spatially discrete chirped FBG,” IEEE Photonics Technol. Lett. 25(19), 1889–1892 (2013).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

2012 (1)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

2011 (6)

2010 (7)

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref] [PubMed]

E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
[Crossref] [PubMed]

P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref] [PubMed]

N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref] [PubMed]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications tomicrowave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

2009 (1)

2008 (5)

Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express 16(7), 4713–4718 (2008).
[Crossref] [PubMed]

W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
[Crossref] [PubMed]

J. Mora, L. R. Chen, and J. Capmany, “Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities,” J. Lightwave Technol. 26(15), 2663–2670 (2008).
[Crossref]

Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photonics Technol. Lett. 20(2), 78–80 (2008).
[Crossref]

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
[Crossref]

2007 (6)

J. H. Lee, Y. M. Chang, Y.-G. Han, S. B. Lee, and H. Y. Chung, “Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous-wave, incoherent supercontinuum source,” Appl. Opt. 46(22), 5158–5167 (2007).
[Crossref] [PubMed]

J. P. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photonics Technol. Lett. 19(9), 644–646 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
[Crossref]

Y. Yan and J. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photonics Technol. Lett. 19(19), 1472–1474 (2007).
[Crossref]

2006 (2)

R. A. Minasian, “Photonic signal processing of microwave signal,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]

2005 (3)

J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
[Crossref]

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[Crossref] [PubMed]

1999 (1)

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[Crossref]

Agarwal, A.

Alloatti, L.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Asghari, M.

Baeuerle, B.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Banwell, T.

Borja, V.

V. Borja, L. C. Juan, and M. Javier, “Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media,” in IEEE International Topical Meeting on Microwave Photonics (2005).

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref] [PubMed]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref] [PubMed]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
[Crossref] [PubMed]

J. Mora, L. R. Chen, and J. Capmany, “Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities,” J. Lightwave Technol. 26(15), 2663–2670 (2008).
[Crossref]

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[Crossref]

Chan, S. C.

Chang, Y. M.

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Chen, L. R.

Chen, Y.

Chiang, K. S.

Chung, H. Y.

Coldren, L. A.

Dai, Y.

Dalton, L. R.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Dolfi, D.

D. Dolfi, “New trends in optoelectronics for radar, EW and communication systems,” in IEEE International Topical Meeting on Microwave Photonics (2011).

Dong, P.

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Elder, D. L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Farina, M.

G. Venanzoni, A. Morini, and M. Farina, “Practical design of a high power L-band linear phase filter for radar applications,” Microw. Opt. Technol. Lett. 53(12), 2717–2721 (2011).
[Crossref]

Fedeli, J.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Fedoryshyn, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Feng, D.

Feng, N. N.

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Foster, M. A.

Fournier, M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Freude, W.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Gaeta, A. L.

Garcia-Olcina, R.

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]

Gasulla, I.

Guo, N.

Guzzon, R. S.

Haffner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Han, Y.-G.

He, A.

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

He, Y.

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Heni, W.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Hoessbacher, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Huang, D.

Huang, T. X. H.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

Javier, M.

V. Borja, L. C. Juan, and M. Javier, “Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media,” in IEEE International Topical Meeting on Microwave Photonics (2005).

Johansson, L. A.

Josten, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Juan, L. C.

V. Borja, L. C. Juan, and M. Javier, “Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media,” in IEEE International Topical Meeting on Microwave Photonics (2005).

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Koch, U.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Koos, C.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Kuzucu, O.

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Lee, D. C.

Lee, J. H.

Lee, S. B.

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Leuthold, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Levy, J. S.

Li, C.

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Li, F.

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Li, H.

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Li, L.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

Li, S.

Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]

D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
[Crossref]

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Li, X.

Li, Z.

Liang, H.

Liao, J.

Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]

Lipson, M.

Liu, J.

Liu, Q.

Lloret, J.

Loayssa, A.

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Lu, C.

Luff, B. J.

Luff, J. B.

Manzanedo, M. D.

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
[Crossref]

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Menendez, R.

Meng, Q.

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Minasian, R.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

Minasian, R. A.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signal,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

Mora, J.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
[Crossref]

J. Mora, L. R. Chen, and J. Capmany, “Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities,” J. Lightwave Technol. 26(15), 2663–2670 (2008).
[Crossref]

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]

Morini, A.

G. Venanzoni, A. Morini, and M. Farina, “Practical design of a high power L-band linear phase filter for radar applications,” Microw. Opt. Technol. Lett. 53(12), 2717–2721 (2011).
[Crossref]

Mork, J.

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications tomicrowave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
[Crossref]

Mørk, J.

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Norberg, E. J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ohman, F.

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
[Crossref]

Öhman, F.

Ortega, B.

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[Crossref]

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Palmer, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Pan, S.

Parker, J. S.

Pastor, D.

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[Crossref]

Qian, W.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Saha, K.

Salamin, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

Sales, S.

Sancho, J.

Sun, L.

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Toliver, P.

Venanzoni, G.

G. Venanzoni, A. Morini, and M. Farina, “Practical design of a high power L-band linear phase filter for radar applications,” Microw. Opt. Technol. Lett. 53(12), 2717–2721 (2011).
[Crossref]

Wang, C.

C. Wang and J. Yao, “A nonuniformly space microwave photonic filter using a spatially discrete chirped FBG,” IEEE Photonics Technol. Lett. 25(19), 1889–1892 (2013).
[Crossref]

Wang, J.

J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
[Crossref]

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[Crossref] [PubMed]

Wang, Q.

Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photonics Technol. Lett. 20(2), 78–80 (2008).
[Crossref]

J. P. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photonics Technol. Lett. 19(9), 644–646 (2007).
[Crossref]

Wang, Z.

Weiner, A. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Wen, H.

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]

Woodward, T. K.

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Xu, E.

Xue, W.

Xue, X.

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]

Yan, Y.

Y. Yan and J. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photonics Technol. Lett. 19(19), 1472–1474 (2007).
[Crossref]

Yao, J.

C. Wang and J. Yao, “A nonuniformly space microwave photonic filter using a spatially discrete chirped FBG,” IEEE Photonics Technol. Lett. 25(19), 1889–1892 (2013).
[Crossref]

Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express 16(7), 4713–4718 (2008).
[Crossref] [PubMed]

Y. Yan and J. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photonics Technol. Lett. 19(19), 1472–1474 (2007).
[Crossref]

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[Crossref] [PubMed]

Yao, J. P.

Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photonics Technol. Lett. 20(2), 78–80 (2008).
[Crossref]

J. P. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photonics Technol. Lett. 19(9), 644–646 (2007).
[Crossref]

J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
[Crossref]

Yi, X.

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

Yu, C.

Yu, Y.

Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]

E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
[Crossref] [PubMed]

Yvind, K.

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
[Crossref]

Zeng, F.

J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
[Crossref]

F. Zeng, J. Wang, and J. Yao, “All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings,” Opt. Lett. 30(17), 2203–2205 (2005).
[Crossref] [PubMed]

Zhang, H.

Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]

D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
[Crossref]

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]

Zhang, Q.

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Zhang, X.

E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “Ultrahigh-Q microwave photonic filter with Vernier effect and wavelength conversion in a cascaded pair of active loops,” Opt. Lett. 35(8), 1242–1244 (2010).
[Crossref] [PubMed]

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Zhang, Y.

Zheng, X.

Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]

D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
[Crossref]

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]

Zhou, B.

Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]

D. Zou, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-Q microwave photonic filter with self-phase modulation spectrum broadening and third-order dispersion compensation,” Chin. Opt. Lett. 12(8), 080601 (2014).
[Crossref]

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Analysis and compensation of third-order dispersion induced RF distortions in highly reconfigurable microwave photonic filters,” J. Lightwave Technol. 31(13), 2263–2270 (2013).
[Crossref]

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]

Zhou, L.

Zou, D.

Zwick, T.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Electron. Lett. (1)

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett. 41(20), 1113–1135 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (9)

J. P. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photonics Technol. Lett. 19(9), 644–646 (2007).
[Crossref]

Q. Wang and J. P. Yao, “Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer,” IEEE Photonics Technol. Lett. 20(2), 78–80 (2008).
[Crossref]

J. Wang, F. Zeng, and J. P. Yao, “All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion,” IEEE Photonics Technol. Lett. 17(10), 2176–2178 (2005).
[Crossref]

J. Mora, J. Capmany, A. Loayssa, and D. Pastor, “Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection,” IEEE Photonics Technol. Lett. 18(18), 1943–1945 (2006).
[Crossref]

Y. Yan and J. Yao, “A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter,” IEEE Photonics Technol. Lett. 19(19), 1472–1474 (2007).
[Crossref]

F. Ohman, K. Yvind, and J. Mork, “Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics,” IEEE Photonics Technol. Lett. 19(15), 1145–1147 (2007).
[Crossref]

L. Li, X. Yi, T. X. H. Huang, and R. Minasian, “High-resolution single bandpass microwave photonic filter with shape-invariant tunability,” IEEE Photonics Technol. Lett. 26(1), 82–85 (2014).
[Crossref]

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photonics Technol. Lett. 20(7), 526–528 (2008).
[Crossref]

C. Wang and J. Yao, “A nonuniformly space microwave photonic filter using a spatially discrete chirped FBG,” IEEE Photonics Technol. Lett. 25(19), 1889–1892 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (5)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and fast light effects and their applications tomicrowave photonics using semiconductor optical amplifiers,” IEEE Trans. Microw. Theory Tech. 58(11), 3022–3038 (2010).
[Crossref]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay-line filters using chirped Bragg grattings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic fitlers based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

R. A. Minasian, “Photonic signal processing of microwave signal,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[Crossref]

J. Lightwave Technol. (4)

Laser Photonics Rev. (2)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Liao, X. Xue, H. Wen, S. Li, X. Zheng, H. Zhang, and B. Zhou, “A spurious frequencies suppression method for optical frequency comb based microwave photonic filter,” Laser Photonics Rev. 7(4), 34–38 (2013).
[Crossref]

Light Sci. Appl. (1)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3(5), e173 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

G. Venanzoni, A. Morini, and M. Farina, “Practical design of a high power L-band linear phase filter for radar applications,” Microw. Opt. Technol. Lett. 53(12), 2717–2721 (2011).
[Crossref]

Nat. Photonics (3)

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold,”All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9(8), 525–528 (2015).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radio frequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Eng. (1)

Y. Yu, S. Li, J. Liao, X. Zheng, H. Zhang, and B. Zhou, “Improving suppression ratio of microwave photonic filters using high-precision spectral shaping,” Opt. Eng. 54(5), 050501 (2015).
[Crossref]

Opt. Express (8)

Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delayline filter,” Opt. Express 16(7), 4713–4718 (2008).
[Crossref] [PubMed]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
[Crossref] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19(15), 14233–14239 (2011).
[Crossref] [PubMed]

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref] [PubMed]

P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref] [PubMed]

N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010).
[Crossref] [PubMed]

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[Crossref] [PubMed]

S. C. Chan, Q. Liu, Z. Wang, and K. S. Chiang, “Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning,” Opt. Express 19(13), 12045–12052 (2011).
[Crossref] [PubMed]

Opt. Lett. (6)

Supercond. Sci. Technol. (1)

F. Li, X. Zhang, Q. Meng, L. Sun, Q. Zhang, C. Li, S. Li, A. He, H. Li, and Y. He, “Superconducting filter with a linear phase for third-generation mobile communications,” Supercond. Sci. Technol. 20(7), 611–615 (2007).
[Crossref]

Other (7)

D. Sridhar, “Efficient OFDM PAPR reduction method using linear phase variation,” in International Journal of Electronics Communication & Computer Engineering (2011).

D. Dolfi, “New trends in optoelectronics for radar, EW and communication systems,” in IEEE International Topical Meeting on Microwave Photonics (2011).

V. Borja, L. C. Juan, and M. Javier, “Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media,” in IEEE International Topical Meeting on Microwave Photonics (2005).

N. You and R. A. Minasian, “Synthesis of WDM grating-based optical microwave filter with arbitrary impulse response,” in International Topical Meeting on Microwave Photonics (MWP, 1999), pp. 223–226.
[Crossref]

J. Wang, Y. Xuan, A. J. Metcalf, P. Wang, X. Xue, D. E. Leaird, A. M. Weiner, and M. Qi, A multi-channel thermally reconfigurable SiN spectral shaper,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM3G.4.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. Tom, and A. M. Weiner, Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb,” in CLEO: 2011 - Laser Science to Photonic Applications (OSA, 2011).

T. Kippenberg, “Microresonator-based optical frequency combs,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF3M.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of the proposed filter.

Fig. 2
Fig. 2

Amplitude response G(ω) of DSB modulation caused by the fiber dispersion.

Fig. 3
Fig. 3

Experimental setup of the proposed filter.

Fig. 4
Fig. 4

Optical spectra of (a) the optical frequency comb, and the waveshaper outputs for (b) positive taps, and (c) negative taps.

Fig. 5
Fig. 5

Normalized S21 response of (a) lowpass filters; (b) highpass filters; (c) bandpass filters; (d) bandstop filters. (Solid lines: experimental results. Dashed lines: theoretical curves).

Fig. 6
Fig. 6

(a) Normalized amplitude response and (b) phase response of a triple passband filter (Blue line: Response with only 2nd order dispersion; Yellow line: Response with 2nd and 3rd order dispersion; Red line: Experimental result)

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

s o = n=0 N-1 h(n) s i (tnT)
H(ω)= n=0 N-1 h(n)exp(jnωT)
H(ω) =e jφ(ω) | H(ω) |={ e jωT(N1)/2 n=0 N-1 h(n)cos[ ( N1 2 n)ωT) ] , when h(n)=h(N1n) e jπ/2jωT(N1)/2 n=0 N-1 h(n)sin[ ( N1 2 n)ωT) ] , when h(n)=h(N1n)
E s (t)= n=0 N-1 P 0 (n) exp( -j ω n t ) = n=0 N-1 P 0 (n) exp[ -j( ω 0 +n ω r )t ]
E m (t)= E s (t)cos( π 4 + π V RF (t) 2 V π ) 2 2 n=0 N1 P 0 (n) [ 1 2 J 1 ( π A RF 2 V π ) e j( ω n t ω RF t)j π 2 + J 0 ( π A RF 2 V π ) e j ω n t + 1 2 J 1 ( π A RF 2 V π ) e j( ω n t+ ω RF t)+j π 2 ]
θ(ω)= β 2 L 2 (ω ω 0 ) 2
E D (t)= 2 2 n=0 N1 P 0 (n) [ 1 2 J 1 ( π A RF 2 V π ) e j[ ω n t ω RF t+θ( ω n ω RF )+j π 2 ] + J 0 ( π A RF 2 V π ) e j( ω n t+θ( ω n )) + 1 2 J 1 ( π A RF 2 V π ) e j[ ω n t+ ω RF t+θ( ω n + ω RF )j π 2 ] ]
I o (t)= A D cos( β 2 L ω RF 2 2 )[ n,h(n)>0 P s (n)cos( ω RF t+n β 2 L ω RF ω r ) n,h(n)<0 P s (n)cos( ω RF t+n β 2 L ω RF ω r ) ] = A D cos( β 2 L ω RF 2 2 ) n=0 N1 sign[ h(n) P s (n) ] cos{ ω RF [ t-(-n β 2 L ω r ) ] }
A D =αRZ J 0 ( π A RF 2 V π ) J 1 ( π A RF 2 V π )
H(ω)=G(ω) n=0 N1 [ sign(h(n)) P s (n) ]exp(-jnωT)
T=- β 2 ω r L
G(ω)= A D cos( β 2 L ω 2 /2)
H(ω)=G(ω) e jωT(N1)/2 n=0 N-1 [ sign(h(n)) P s (n) ]cos[ ( N1 2 n)ωT) ]
G(ω)={ A S exp(j β 2 L ω 2 /2), Single-sideband modulation A P sin( β 2 L ω 2 /2), Phase-modulation A D cos( β 2 L ω 2 /2), Double-sideband modulation
H(ω)= A D n=0 N1 [ sign(h(n)) P s (n) ]cos( β 2 L ω 2 2 + n β 3 L ω 2 ω r 2 )exp(-j(nω β 2 L ω r + 1 6 β 3 L ω 3 + n 2 2 β 3 L ω r 2 ω))
H(ω) A D cos( β 2 L ω 2 2 ) n=0 N1 P s (n)exp(-j(nω β 2 L ω r + n 2 2 β 3 L ω r 2 ω))
T(n)= β 2 L ω r + 1 2 β 3 L ω r 2 +n β 3 L ω r 2

Metrics