Abstract

The silver nanowire (AgNW) has excellent light capture ability, showing great prospects in many fields. Based on discrete dipole approximation simulations, it is found that the captured light can be subdivided into three parts: the near-field light occupies ~27.3%, mainly confined around the nanowire with a distance <20nm; the far-field part occupies ~59.6%, showing a dramatic conical distribution; and ~13.1% is ohmically absorbed. These insights are helpful to estimate the limited performance of AgNW-based device utilizing each subdivision, and locate the functional zone. Besides, we found that the light capture efficiency of AgNW can be easily controlled as it increases linearly with nanowire length.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light harvesting of silicon nanostructure for solar cells application

Yingfeng Li, Luo Yue, Younan Luo, Wenjian Liu, and Meicheng Li
Opt. Express 24(14) A1075-A1082 (2016)

Enhanced photon absorption of single nanowire α-Si solar cells modulated by silver core

Yaohui Zhan, Jiupeng Zhao, Changhai Zhou, Muluneh Alemayehu, Yanpeng Li, and Yao Li
Opt. Express 20(10) 11506-11516 (2012)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. Laprévote, A. Oliva, C. Delerue, P. Thomas, and M. Boucart, “Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance,” Neuropsychologia 48(14), 4164–4168 (2010).
    [Crossref] [PubMed]
  2. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
    [Crossref] [PubMed]
  3. H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
    [Crossref]
  4. J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
    [Crossref]
  5. Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
    [Crossref] [PubMed]
  6. C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
    [Crossref]
  7. K. Ni, L. Chen, and G. Lu, “Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction,” Electrochem. Commun. 10(7), 1027–1030 (2008).
    [Crossref]
  8. X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
    [Crossref] [PubMed]
  9. X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
    [Crossref]
  10. C. Li, M. Bescond, and M. Lannoo, “Influence of the interface-induced electron self-energy on the subthreshold characteristics of silicon gate-all-around nanowire transistors,” Appl. Phys. Lett. 97(25), 252109 (2010).
    [Crossref]
  11. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
    [Crossref] [PubMed]
  12. C. Delerue, G. Allan, J. Pijpers, and M. Bonn, “Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells,” Phys. Rev. B 81(12), 125306 (2010).
    [Crossref]
  13. C. Delerue, V. Laprévote, K. Verfaillie, and M. Boucart, “Gaze control during face exploration in schizophrenia,” Neurosci. Lett. 482(3), 245–249 (2010).
    [Crossref] [PubMed]
  14. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
    [Crossref] [PubMed]
  15. Y. Cui, I. Y. Phang, R. S. Hegde, Y. H. Lee, and X. Y. Ling, “Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application,” ACS Photonics 1(7), 631–637 (2014).
    [Crossref]
  16. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [Crossref] [PubMed]
  17. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
    [Crossref] [PubMed]
  18. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
    [Crossref] [PubMed]
  19. Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
    [Crossref]
  20. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
    [Crossref]
  21. S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19(17), 16526–16541 (2011).
    [Crossref] [PubMed]
  22. B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” https://arXiv:1305.6497v1 (2013).
  23. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [Crossref]
  24. P. J. Flatau and B. T. Draine, “Fast near field calculations in the discrete dipole approximation for regular rectilinear grids,” Opt. Express 20(2), 1247–1252 (2012).
    [Crossref] [PubMed]
  25. Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of silicon nanostructure for solar cells application,” Opt. Express 24(14), A1075–A1082 (2016).
    [Crossref] [PubMed]
  26. Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
    [Crossref]
  27. Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
    [Crossref] [PubMed]
  28. O. S. Wolfbeis, M. Schäferling, and A. Dürkop, “Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor,” Mikrochim. Acta 143, 221–227 (2003).
    [Crossref]
  29. C.-S. Chu and Y.-L. Lo, “Ratiometric fiber-optic oxygen sensors based on sol–gel matrix doped with metalloporphyrin and 7-amino-4-trifluoromethyl coumarin,” Sens. Actuators B Chem. 134(2), 711–717 (2008).
    [Crossref]
  30. Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
    [Crossref] [PubMed]
  31. D. W. Lynch and W. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids (Academic Press, 1985).

2016 (1)

2015 (3)

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

2014 (2)

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Y. Cui, I. Y. Phang, R. S. Hegde, Y. H. Lee, and X. Y. Ling, “Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application,” ACS Photonics 1(7), 631–637 (2014).
[Crossref]

2013 (3)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
[Crossref]

2012 (1)

2011 (4)

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19(17), 16526–16541 (2011).
[Crossref] [PubMed]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref] [PubMed]

2010 (4)

C. Delerue, G. Allan, J. Pijpers, and M. Bonn, “Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells,” Phys. Rev. B 81(12), 125306 (2010).
[Crossref]

C. Delerue, V. Laprévote, K. Verfaillie, and M. Boucart, “Gaze control during face exploration in schizophrenia,” Neurosci. Lett. 482(3), 245–249 (2010).
[Crossref] [PubMed]

C. Li, M. Bescond, and M. Lannoo, “Influence of the interface-induced electron self-energy on the subthreshold characteristics of silicon gate-all-around nanowire transistors,” Appl. Phys. Lett. 97(25), 252109 (2010).
[Crossref]

V. Laprévote, A. Oliva, C. Delerue, P. Thomas, and M. Boucart, “Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance,” Neuropsychologia 48(14), 4164–4168 (2010).
[Crossref] [PubMed]

2008 (4)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

K. Ni, L. Chen, and G. Lu, “Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction,” Electrochem. Commun. 10(7), 1027–1030 (2008).
[Crossref]

C.-S. Chu and Y.-L. Lo, “Ratiometric fiber-optic oxygen sensors based on sol–gel matrix doped with metalloporphyrin and 7-amino-4-trifluoromethyl coumarin,” Sens. Actuators B Chem. 134(2), 711–717 (2008).
[Crossref]

Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
[Crossref] [PubMed]

2005 (1)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

2003 (1)

O. S. Wolfbeis, M. Schäferling, and A. Dürkop, “Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor,” Mikrochim. Acta 143, 221–227 (2003).
[Crossref]

2002 (2)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
[Crossref]

2001 (2)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

1994 (1)

Allan, G.

C. Delerue, G. Allan, J. Pijpers, and M. Bonn, “Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells,” Phys. Rev. B 81(12), 125306 (2010).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Bai, F.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Berry, M. T.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref] [PubMed]

Bescond, M.

C. Li, M. Bescond, and M. Lannoo, “Influence of the interface-induced electron self-energy on the subthreshold characteristics of silicon gate-all-around nanowire transistors,” Appl. Phys. Lett. 97(25), 252109 (2010).
[Crossref]

Bonn, M.

C. Delerue, G. Allan, J. Pijpers, and M. Bonn, “Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells,” Phys. Rev. B 81(12), 125306 (2010).
[Crossref]

Boucart, M.

C. Delerue, V. Laprévote, K. Verfaillie, and M. Boucart, “Gaze control during face exploration in schizophrenia,” Neurosci. Lett. 482(3), 245–249 (2010).
[Crossref] [PubMed]

V. Laprévote, A. Oliva, C. Delerue, P. Thomas, and M. Boucart, “Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance,” Neuropsychologia 48(14), 4164–4168 (2010).
[Crossref] [PubMed]

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Chen, L.

K. Ni, L. Chen, and G. Lu, “Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction,” Electrochem. Commun. 10(7), 1027–1030 (2008).
[Crossref]

Chen, X.

Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
[Crossref] [PubMed]

Chen, Y. L.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Chu, C.-S.

C.-S. Chu and Y.-L. Lo, “Ratiometric fiber-optic oxygen sensors based on sol–gel matrix doped with metalloporphyrin and 7-amino-4-trifluoromethyl coumarin,” Sens. Actuators B Chem. 134(2), 711–717 (2008).
[Crossref]

Chu, L.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Cui, Y.

Y. Cui, I. Y. Phang, R. S. Hegde, Y. H. Lee, and X. Y. Ling, “Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application,” ACS Photonics 1(7), 631–637 (2014).
[Crossref]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Delerue, C.

C. Delerue, G. Allan, J. Pijpers, and M. Bonn, “Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells,” Phys. Rev. B 81(12), 125306 (2010).
[Crossref]

C. Delerue, V. Laprévote, K. Verfaillie, and M. Boucart, “Gaze control during face exploration in schizophrenia,” Neurosci. Lett. 482(3), 245–249 (2010).
[Crossref] [PubMed]

V. Laprévote, A. Oliva, C. Delerue, P. Thomas, and M. Boucart, “Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance,” Neuropsychologia 48(14), 4164–4168 (2010).
[Crossref] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Dong, H.

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Doorn, J. M.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref] [PubMed]

Draine, B. T.

Dürkop, A.

O. S. Wolfbeis, M. Schäferling, and A. Dürkop, “Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor,” Mikrochim. Acta 143, 221–227 (2003).
[Crossref]

El-Sayed, M. A.

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

El-Shafei, A.

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Fan, F.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Flatau, P. J.

Fu, P.

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Gao, Y.

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Guo, G. C.

X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
[Crossref]

Guo, Z.

Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
[Crossref] [PubMed]

Hanna, S.

Hegde, R. S.

Y. Cui, I. Y. Phang, R. S. Hegde, Y. H. Lee, and X. Y. Ling, “Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application,” ACS Photonics 1(7), 631–637 (2014).
[Crossref]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Hou, X.

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Jana, N. R.

C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
[Crossref]

Jia, Y.

Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
[Crossref] [PubMed]

Jiang, B.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Jiang, C.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref] [PubMed]

Jiao, B.

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Kottmann, J. P.

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Lannoo, M.

C. Li, M. Bescond, and M. Lannoo, “Influence of the interface-induced electron self-energy on the subthreshold characteristics of silicon gate-all-around nanowire transistors,” Appl. Phys. Lett. 97(25), 252109 (2010).
[Crossref]

Laprévote, V.

C. Delerue, V. Laprévote, K. Verfaillie, and M. Boucart, “Gaze control during face exploration in schizophrenia,” Neurosci. Lett. 482(3), 245–249 (2010).
[Crossref] [PubMed]

V. Laprévote, A. Oliva, C. Delerue, P. Thomas, and M. Boucart, “Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance,” Neuropsychologia 48(14), 4164–4168 (2010).
[Crossref] [PubMed]

Lee, Y. H.

Y. Cui, I. Y. Phang, R. S. Hegde, Y. H. Lee, and X. Y. Ling, “Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application,” ACS Photonics 1(7), 631–637 (2014).
[Crossref]

Li, C.

C. Li, M. Bescond, and M. Lannoo, “Influence of the interface-induced electron self-energy on the subthreshold characteristics of silicon gate-all-around nanowire transistors,” Appl. Phys. Lett. 97(25), 252109 (2010).
[Crossref]

Li, M.

Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of silicon nanostructure for solar cells application,” Opt. Express 24(14), A1075–A1082 (2016).
[Crossref] [PubMed]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
[Crossref] [PubMed]

Li, Q.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Li, R.

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Li, Y.

Y. Li, L. Yue, Y. Luo, W. Liu, and M. Li, “Light harvesting of silicon nanostructure for solar cells application,” Opt. Express 24(14), A1075–A1082 (2016).
[Crossref] [PubMed]

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Lin, C.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref] [PubMed]

Ling, X. Y.

Y. Cui, I. Y. Phang, R. S. Hegde, Y. H. Lee, and X. Y. Ling, “Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application,” ACS Photonics 1(7), 631–637 (2014).
[Crossref]

Liu, A. P.

X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
[Crossref]

Liu, H.

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Liu, J.

Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
[Crossref] [PubMed]

Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
[Crossref] [PubMed]

Liu, R.-S.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Liu, W.

Lo, Y.-L.

C.-S. Chu and Y.-L. Lo, “Ratiometric fiber-optic oxygen sensors based on sol–gel matrix doped with metalloporphyrin and 7-amino-4-trifluoromethyl coumarin,” Sens. Actuators B Chem. 134(2), 711–717 (2008).
[Crossref]

Lu, F.

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Lu, G.

K. Ni, L. Chen, and G. Lu, “Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction,” Electrochem. Commun. 10(7), 1027–1030 (2008).
[Crossref]

Luo, Y.

Luu, Q. N.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref] [PubMed]

Martin, O. J.

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

May, P. S.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref] [PubMed]

Meng, F.

Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
[Crossref] [PubMed]

Murphy, C. J.

C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
[Crossref]

Ni, K.

K. Ni, L. Chen, and G. Lu, “Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction,” Electrochem. Commun. 10(7), 1027–1030 (2008).
[Crossref]

Ning, S.

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Oliva, A.

V. Laprévote, A. Oliva, C. Delerue, P. Thomas, and M. Boucart, “Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance,” Neuropsychologia 48(14), 4164–4168 (2010).
[Crossref] [PubMed]

Phang, I. Y.

Y. Cui, I. Y. Phang, R. S. Hegde, Y. H. Lee, and X. Y. Ling, “Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application,” ACS Photonics 1(7), 631–637 (2014).
[Crossref]

Pijpers, J.

C. Delerue, G. Allan, J. Pijpers, and M. Bonn, “Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells,” Phys. Rev. B 81(12), 125306 (2010).
[Crossref]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Ren, X. F.

X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
[Crossref]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Schäferling, M.

O. S. Wolfbeis, M. Schäferling, and A. Dürkop, “Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor,” Mikrochim. Acta 143, 221–227 (2003).
[Crossref]

Schultz, S.

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Shen, C.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Simpson, S. H.

Smith, D. R.

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

Song, D.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

Sun, F. W.

X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
[Crossref]

Sun, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Thomas, P.

V. Laprévote, A. Oliva, C. Delerue, P. Thomas, and M. Boucart, “Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance,” Neuropsychologia 48(14), 4164–4168 (2010).
[Crossref] [PubMed]

Tsai, D. P.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Verfaillie, K.

C. Delerue, V. Laprévote, K. Verfaillie, and M. Boucart, “Gaze control during face exploration in schizophrenia,” Neurosci. Lett. 482(3), 245–249 (2010).
[Crossref] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Wang, J.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Wang, W.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Wang, Z. L.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis, M. Schäferling, and A. Dürkop, “Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor,” Mikrochim. Acta 143, 221–227 (2003).
[Crossref]

Wu, Z.

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Xiong, X.

X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
[Crossref]

Xu, H.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Yang, Q.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Ye, Y. X.

X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
[Crossref]

Yue, L.

Zhang, X.

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Zou, C. L.

X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
[Crossref]

Acc. Chem. Res. (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

ACS Photonics (1)

Y. Cui, I. Y. Phang, R. S. Hegde, Y. H. Lee, and X. Y. Ling, “Plasmonic silver nanowire structures for two-dimensional multiple-digit molecular data storage application,” ACS Photonics 1(7), 631–637 (2014).
[Crossref]

Adv. Mater. (1)

C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. 14(1), 80–82 (2002).
[Crossref]

Appl. Phys. Lett. (2)

C. Li, M. Bescond, and M. Lannoo, “Influence of the interface-induced electron self-energy on the subthreshold characteristics of silicon gate-all-around nanowire transistors,” Appl. Phys. Lett. 97(25), 252109 (2010).
[Crossref]

Y. Li, M. Li, R. Li, P. Fu, L. Chu, and D. Song, “Method to determine the optimal silicon nanowire length for photovoltaic devices,” Appl. Phys. Lett. 106(9), 091908 (2015).
[Crossref]

Chem. Soc. Rev. (1)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Electrochem. Commun. (1)

K. Ni, L. Chen, and G. Lu, “Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction,” Electrochem. Commun. 10(7), 1027–1030 (2008).
[Crossref]

J. Colloid Interface Sci. (1)

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. S. May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

X. Xiong, C. L. Zou, X. F. Ren, A. P. Liu, Y. X. Ye, F. W. Sun, and G. C. Guo, “Silver nanowires for photonics applications,” Laser Photonics Rev. 7(6), 901–919 (2013).
[Crossref]

Mikrochim. Acta (1)

O. S. Wolfbeis, M. Schäferling, and A. Dürkop, “Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor,” Mikrochim. Acta 143, 221–227 (2003).
[Crossref]

Nano Energy (2)

Y. Li, M. Li, D. Song, H. Liu, B. Jiang, F. Bai, and L. Chu, “Broadband light-concentration with near-surface distribution by silver capped silicon nanowire for high-performance solar cells,” Nano Energy 11, 756–764 (2015).
[Crossref]

H. Dong, Z. Wu, F. Lu, Y. Gao, A. El-Shafei, B. Jiao, S. Ning, and X. Hou, “Optics–electrics highways: Plasmonic silver nanowires@ TiO 2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance,” Nano Energy 10, 181–191 (2014).
[Crossref]

Nano Lett. (1)

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Guo, J. Liu, Y. Jia, X. Chen, F. Meng, M. Li, and J. Liu, “Template synthesis, organic gas-sensing and optical properties of hollow and porous In2O3 nanospheres,” Nanotechnology 19(34), 345704 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Neuropsychologia (1)

V. Laprévote, A. Oliva, C. Delerue, P. Thomas, and M. Boucart, “Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance,” Neuropsychologia 48(14), 4164–4168 (2010).
[Crossref] [PubMed]

Neurosci. Lett. (1)

C. Delerue, V. Laprévote, K. Verfaillie, and M. Boucart, “Gaze control during face exploration in schizophrenia,” Neurosci. Lett. 482(3), 245–249 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (3)

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

J. P. Kottmann, O. J. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64(23), 235402 (2001).
[Crossref]

C. Delerue, G. Allan, J. Pijpers, and M. Bonn, “Carrier multiplication in bulk and nanocrystalline semiconductors: Mechanism, efficiency, and interest for solar cells,” Phys. Rev. B 81(12), 125306 (2010).
[Crossref]

Phys. Rev. Lett. (1)

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref] [PubMed]

Science (1)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

C.-S. Chu and Y.-L. Lo, “Ratiometric fiber-optic oxygen sensors based on sol–gel matrix doped with metalloporphyrin and 7-amino-4-trifluoromethyl coumarin,” Sens. Actuators B Chem. 134(2), 711–717 (2008).
[Crossref]

Other (2)

B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.3,” https://arXiv:1305.6497v1 (2013).

D. W. Lynch and W. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of AgNW; and (b) the complex index of refraction for silver.

Fig. 2
Fig. 2

(a) Influence of incident angle on the extinction cross-section of AgNW with 80nm diameter and 1μm length; (b) relationship between the cross-section at RW and θ, where dashed lines are used to denote corresponding values at wavelength 0.395μm when θ is greater than 50° as there is no obvious RW in these cases.

Fig. 3
Fig. 3

(a) Electric field distributions in and around AgNW, under incident light with λ = 0.395μm. In1: cross section; In2: radial distribution of the light intensity ( |E| 2 /|E 0 | 2 *area ), which is calculated by dividing the cross section into 100 annuluses and integrating over each of them. (b) Angle distribution of the scattering light.

Fig. 4
Fig. 4

(a) Extinction efficiencies of AgNW with lengths from 1 to 10μm, with inset about the variation of RW with length; (b) Relationship of the maximum extinction, scattering and absorption efficiencies at RW to the lengths; (c) Relationship of average extinction, scattering and absorption efficiencies in waveband 0.2-0.6μm to the lengths.