Abstract

A single-measurement sweep-free distributed Brillouin optical time domain analyzer (BOTDA) sensor based on phase detection is proposed and experimentally demonstrated employing digital optical frequency comb (DOFC) probe signal. Brillouin Phase Spectrum (BPS) of DOFC probe induced by Brillouin interaction is measured using coherent detection in a single acquisition, without any frequency scanning and data averaging. Single-measurement BOTDA sensor based on BPS in 10km long fiber is demonstrated with a response time of 100 μs, which is limited only by the fiber length. The spatial resolution is 51.2m, determined by the duration of DOFC. And the Brillouin frequency shift (BFS) uncertainty is estimated to be~1.5 MHz at the end of fiber under test (FUT). Benefiting from the fast response time, dynamic measurement up to 1 kHz vibration frequency has been demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scanning-free BOTDA based on ultra-fine digital optical frequency comb

Chao Jin, Nan Guo, Yuanhua Feng, Liang Wang, Hao Liang, Jianping Li, Zhaohui Li, Changyuan Yu, and Chao Lu
Opt. Express 23(4) 5277-5284 (2015)

Precise Brillouin gain and phase spectra measurements in coherent BOTDA sensor with phase fluctuation cancellation

Zonglei Li, Lianshan Yan, Liyang Shao, Wei Pan, Bin Luo, Jiawei Liang, Haijun He, and Yunpeng Zhang
Opt. Express 24(5) 4824-4833 (2016)

Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements

Dengwang Zhou, Yongkang Dong, Benzhang Wang, Taofei Jiang, Dexin Ba, Pengbai Xu, Hongying Zhang, Zhiwei Lu, and Hui Li
Opt. Express 25(3) 1889-1902 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
    [Crossref] [PubMed]
  2. T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
    [Crossref]
  3. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  4. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  5. Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
    [Crossref] [PubMed]
  6. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  7. X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
    [Crossref]
  8. A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
    [Crossref]
  9. A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express 19(26), B842–B847 (2011).
    [Crossref] [PubMed]
  10. A. Voskoboinik, D. Rogawski, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer and sloped-assisted FBG sensing,” Opt. Express 20(26), B581–B586 (2012).
    [Crossref] [PubMed]
  11. I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
    [Crossref]
  12. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultra high speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
    [Crossref]
  13. E. Preter, D. Ba, Y. London, O. Shlomi, Y. Antman, and A. Zadok, “High-resolution Brillouin optical correlation domain analysis with no spectral scanning,” Opt. Express 24(24), 27253–27267 (2016).
    [Crossref] [PubMed]
  14. J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing,” in Proceedings of IEEE Conference on Sensors (2016), pp. 1–3.
    [Crossref]
  15. X. Bao and L. Chen, “Recent progress in optical fiber sensors based on Brillouin scattering at university of Ottawa,” Photon. Sensors 1(2), 102–117 (2011).
    [Crossref]
  16. T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
    [Crossref] [PubMed]
  17. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
    [Crossref] [PubMed]
  18. C. Jin, N. Guo, Y. Feng, L. Wang, H. Liang, J. Li, Z. Li, C. Yu, and C. Lu, “Scanning-free BOTDA based on ultra-fine digital optical frequency comb,” Opt. Express 23(4), 5277–5284 (2015).
    [Crossref] [PubMed]
  19. X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).
    [Crossref]
  20. X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-Lopez, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
    [Crossref]
  21. Z. Li, L. Yan, L. Shao, W. Pan, and B. Luo, “Coherent BOTDA sensor with intensity modulated local light and IQ demodulation,” Opt. Express 23(12), 16407–16415 (2015).
    [Crossref] [PubMed]
  22. A. Lopez-Gil, X. Angulo-Vinuesa, M. A. Soto, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Gain vs phase in BOTDA setups,” Proc. SPIE 9916, 991631 (2016).
    [Crossref]
  23. A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
    [Crossref] [PubMed]
  24. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
    [Crossref] [PubMed]
  25. S. Díaz, S. M. Foaleng, M. López-Amo, and L. Thévenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
    [Crossref]
  26. J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
    [Crossref]
  27. J. Urricelqui, F. López-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity for Brillouin distributed fiber sensors based on a double orthogonal pump,” Proc. SPIE 9157, 91576A (2014).
  28. J. Urricelqui, F. López-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction,” J. Lightwave Technol. 33(12), 2633–2638 (2015).
    [Crossref]
  29. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [Crossref] [PubMed]
  30. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  31. K. M. Wolter, introduction to variance estimation (Springer Science + Business Media, 2007), Chap. 6.
  32. Z. Songlin and Z. Kun, “Approximate computation of expectation and variance of nonlinear function of continuous random variable,” J. Geodesy. Geodyn. 28, 107 (2008).

2016 (4)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultra high speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

A. Lopez-Gil, X. Angulo-Vinuesa, M. A. Soto, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Gain vs phase in BOTDA setups,” Proc. SPIE 9916, 991631 (2016).
[Crossref]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

E. Preter, D. Ba, Y. London, O. Shlomi, Y. Antman, and A. Zadok, “High-resolution Brillouin optical correlation domain analysis with no spectral scanning,” Opt. Express 24(24), 27253–27267 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (2)

J. Urricelqui, F. López-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity for Brillouin distributed fiber sensors based on a double orthogonal pump,” Proc. SPIE 9157, 91576A (2014).

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (5)

2010 (1)

2009 (1)

2008 (5)

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[Crossref] [PubMed]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[Crossref] [PubMed]

Z. Songlin and Z. Kun, “Approximate computation of expectation and variance of nonlinear function of continuous random variable,” J. Geodesy. Geodyn. 28, 107 (2008).

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[Crossref]

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

2007 (1)

S. Díaz, S. M. Foaleng, M. López-Amo, and L. Thévenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[Crossref]

1989 (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
[Crossref] [PubMed]

Andres, M. V.

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-Lopez, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
[Crossref]

Angulo-Vinuesa, X.

A. Lopez-Gil, X. Angulo-Vinuesa, M. A. Soto, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Gain vs phase in BOTDA setups,” Proc. SPIE 9916, 991631 (2016).
[Crossref]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-Lopez, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
[Crossref]

Antman, Y.

Ba, D.

Bao, H.

Bao, X.

X. Bao and L. Chen, “Recent progress in optical fiber sensors based on Brillouin scattering at university of Ottawa,” Photon. Sensors 1(2), 102–117 (2011).
[Crossref]

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Barros, D. J. F.

Benmokrane, B.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Bernini, R.

Bolognini, G.

Chen, L.

X. Bao and L. Chen, “Recent progress in optical fiber sensors based on Brillouin scattering at university of Ottawa,” Photon. Sensors 1(2), 102–117 (2011).
[Crossref]

Chen, M.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Chen, W.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Chen, Z.

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[Crossref]

Chitgarha, M.

Cruz, J. L.

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-Lopez, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
[Crossref]

Di Pasquale, F.

Díaz, S.

S. Díaz, S. M. Foaleng, M. López-Amo, and L. Thévenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[Crossref]

Dominguez-Lopez, A.

A. Lopez-Gil, X. Angulo-Vinuesa, M. A. Soto, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Gain vs phase in BOTDA setups,” Proc. SPIE 9916, 991631 (2016).
[Crossref]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-Lopez, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
[Crossref]

Eisa, M.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

El-Gamal, S.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Eyal, A.

Fang, J.

J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing,” in Proceedings of IEEE Conference on Sensors (2016), pp. 1–3.
[Crossref]

Feng, Y.

Foaleng, S. M.

S. Díaz, S. M. Foaleng, M. López-Amo, and L. Thévenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[Crossref]

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultra high speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Gonzalez-Herraez, M.

A. Lopez-Gil, X. Angulo-Vinuesa, M. A. Soto, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Gain vs phase in BOTDA setups,” Proc. SPIE 9916, 991631 (2016).
[Crossref]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-Lopez, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
[Crossref]

Guo, N.

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultra high speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
[Crossref] [PubMed]

Huang, H.

Ip, E.

Jin, C.

Kahn, J. M.

Kressel, I.

Kun, Z.

Z. Songlin and Z. Kun, “Approximate computation of expectation and variance of nonlinear function of continuous random variable,” J. Geodesy. Geodyn. 28, 107 (2008).

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Lau, A. P. T.

Li, J.

Li, W.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Li, Z.

Liang, H.

Loayssa, A.

London, Y.

López-Amo, M.

S. Díaz, S. M. Foaleng, M. López-Amo, and L. Thévenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[Crossref]

López-Fernandino, F.

J. Urricelqui, F. López-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction,” J. Lightwave Technol. 33(12), 2633–2638 (2015).
[Crossref]

J. Urricelqui, F. López-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity for Brillouin distributed fiber sensors based on a double orthogonal pump,” Proc. SPIE 9157, 91576A (2014).

Lopez-Gil, A.

A. Lopez-Gil, X. Angulo-Vinuesa, M. A. Soto, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Gain vs phase in BOTDA setups,” Proc. SPIE 9916, 991631 (2016).
[Crossref]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-Lopez, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
[Crossref]

Lu, C.

Luo, B.

Martin-Lopez, S.

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

A. Lopez-Gil, X. Angulo-Vinuesa, M. A. Soto, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Gain vs phase in BOTDA setups,” Proc. SPIE 9916, 991631 (2016).
[Crossref]

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-Lopez, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
[Crossref]

Meng, Z.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Minardo, A.

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultra high speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Motil, A.

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultra high speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Ng, J.

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[Crossref]

Nuccio, S. R.

Pan, W.

Peled, Y.

Preter, E.

Rogawski, D.

Sagues, M.

Shamee, B.

Shao, L.

Shieh, W.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[Crossref] [PubMed]

J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing,” in Proceedings of IEEE Conference on Sensors (2016), pp. 1–3.
[Crossref]

Shlomi, O.

Song, K. Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultra high speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Songlin, Z.

Z. Songlin and Z. Kun, “Approximate computation of expectation and variance of nonlinear function of continuous random variable,” J. Geodesy. Geodyn. 28, 107 (2008).

Soto, M. A.

Sovran, I.

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

Sperber, T.

Sun, Q.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Tang, Y.

Tateda, M.

T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

Thévenaz, L.

A. Lopez-Gil, X. Angulo-Vinuesa, M. A. Soto, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Gain vs phase in BOTDA setups,” Proc. SPIE 9916, 991631 (2016).
[Crossref]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
[Crossref] [PubMed]

S. Díaz, S. M. Foaleng, M. López-Amo, and L. Thévenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[Crossref]

Tu, X.

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

Tur, M.

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
[Crossref] [PubMed]

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[Crossref] [PubMed]

A. Voskoboinik, D. Rogawski, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer and sloped-assisted FBG sensing,” Opt. Express 20(26), B581–B586 (2012).
[Crossref] [PubMed]

A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express 19(26), B842–B847 (2011).
[Crossref] [PubMed]

A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
[Crossref]

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
[Crossref] [PubMed]

Urricelqui, J.

Voskoboinik, A.

Wang, J.

Wang, L.

Willner, A. E.

Willner, A. W.

Xu, P.

J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing,” in Proceedings of IEEE Conference on Sensors (2016), pp. 1–3.
[Crossref]

Yan, L.

Yang, J.

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[Crossref]

Yang, X.

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[Crossref]

Yaron, L.

Yilmaz, O. F.

Yu, C.

C. Jin, N. Guo, Y. Feng, L. Wang, H. Liang, J. Li, Z. Li, C. Yu, and C. Lu, “Scanning-free BOTDA based on ultra-fine digital optical frequency comb,” Opt. Express 23(4), 5277–5284 (2015).
[Crossref] [PubMed]

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[Crossref]

Zadok, A.

Zeni, L.

Zhang, C.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Zhang, L.

Zornoza, A.

IEEE Photonics J. (1)

X. Tu, Q. Sun, W. Chen, M. Chen, and Z. Meng, “Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm,” IEEE Photonics J. 6(2), 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technol. Lett. 1(5), 107–108 (1989).
[Crossref]

I. Sovran, A. Motil, and M. Tur, “Frequency-scanning BOTDA with ultimately fast acquisition speed,” IEEE Photonics Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

J. Geodesy. Geodyn. (1)

Z. Songlin and Z. Kun, “Approximate computation of expectation and variance of nonlinear function of continuous random variable,” J. Geodesy. Geodyn. 28, 107 (2008).

J. Lightwave Technol. (2)

Light Sci. Appl. (1)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultra high speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Opt. Express (14)

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
[Crossref] [PubMed]

A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express 19(26), B842–B847 (2011).
[Crossref] [PubMed]

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[Crossref] [PubMed]

J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
[Crossref] [PubMed]

A. Voskoboinik, D. Rogawski, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer and sloped-assisted FBG sensing,” Opt. Express 20(26), B581–B586 (2012).
[Crossref] [PubMed]

Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
[Crossref] [PubMed]

C. Jin, N. Guo, Y. Feng, L. Wang, H. Liang, J. Li, Z. Li, C. Yu, and C. Lu, “Scanning-free BOTDA based on ultra-fine digital optical frequency comb,” Opt. Express 23(4), 5277–5284 (2015).
[Crossref] [PubMed]

Z. Li, L. Yan, L. Shao, W. Pan, and B. Luo, “Coherent BOTDA sensor with intensity modulated local light and IQ demodulation,” Opt. Express 23(12), 16407–16415 (2015).
[Crossref] [PubMed]

A. Lopez-Gil, M. A. Soto, X. Angulo-Vinuesa, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Evaluation of the accuracy of BOTDA systems based on the phase spectral response,” Opt. Express 24(15), 17200–17214 (2016).
[Crossref] [PubMed]

E. Preter, D. Ba, Y. London, O. Shlomi, Y. Antman, and A. Zadok, “High-resolution Brillouin optical correlation domain analysis with no spectral scanning,” Opt. Express 24(24), 27253–27267 (2016).
[Crossref] [PubMed]

T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express 18(8), 8671–8679 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19(5), 4444–4457 (2011).
[Crossref] [PubMed]

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[Crossref] [PubMed]

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Photon. Sensors (1)

X. Bao and L. Chen, “Recent progress in optical fiber sensors based on Brillouin scattering at university of Ottawa,” Photon. Sensors 1(2), 102–117 (2011).
[Crossref]

Proc. SPIE (5)

X. Angulo-Vinuesa, A. Lopez-Gil, A. Dominguez-Lopez, J. L. Cruz, M. V. Andres, S. Martin-Lopez, and M. Gonzalez-Herraez, “Simultaneous gain and phase profile determination on an interferometric BOTDA,” Proc. SPIE 9634, 963419 (2015).
[Crossref]

A. Lopez-Gil, X. Angulo-Vinuesa, M. A. Soto, A. Dominguez-Lopez, S. Martin-Lopez, L. Thévenaz, and M. Gonzalez-Herraez, “Gain vs phase in BOTDA setups,” Proc. SPIE 9916, 991631 (2016).
[Crossref]

S. Díaz, S. M. Foaleng, M. López-Amo, and L. Thévenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[Crossref]

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[Crossref]

J. Urricelqui, F. López-Fernandino, M. Sagues, and A. Loayssa, “Polarization diversity for Brillouin distributed fiber sensors based on a double orthogonal pump,” Proc. SPIE 9157, 91576A (2014).

Smart Mater. Struct. (1)

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Other (2)

J. Fang, W. Shieh, and P. Xu, “Single-shot Brillouin optical time domain analysis for distributed fiber sensing,” in Proceedings of IEEE Conference on Sensors (2016), pp. 1–3.
[Crossref]

K. M. Wolter, introduction to variance estimation (Springer Science + Business Media, 2007), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Proposed BPS based BOTDA sensor scheme. DOFC: digital optical frequency comb; BPS: Brillouin phase spectrum; FUT: fiber under test; Sync: synchronization; FFT: Fast Fourier Transform; FR: frequency offset recovery; PC: phase noise compensation; Det: detection; θ: pre-defined phase vector of the DOFC; θ ' : detected phase vector after Brillouin interaction in the FUT.

Fig. 2
Fig. 2

(a) intensity noise variance and phase noise variance as a function of SNR. (b) BFS uncertainty based on BGS and BPS as a function of SNR.

Fig. 3
Fig. 3

Experiment setup of scanning-free BOTDA based on polarization-diversity pump. PC: polarization controller; EDFA: erbium-doped fiber amplifier; ISO: isolator; MZM: Mach-Zehnder modulator; IM: intensity modulator; PBS: polarizing beam splitter; PBC: polarizing beam combiner; Cir: circulator; LO: local oscillator; DAQ: data acquisition card; OSC: oscilloscope.

Fig. 4
Fig. 4

Brillouin phase spectrum and Brillouin gain spectrum measured by the multi-tone probe signals at the beginning of FUT.

Fig. 5
Fig. 5

Brillouin phase spectrum and the measured BFS distribution (inset) along the FUT.

Fig. 6
Fig. 6

(a) The SNR along FUT, defined by the maximum gain in the central of BGS normalized against noise deviation. No averaging is used in the measurement of SNR. (b) BFS uncertainty against distance calculated using BGS and BPS, respectively.

Fig. 7
Fig. 7

Evaluation of spatial resolution with ~51m fiber section at the middle heated to 60°C (equivalent to 50MHz). (a) BPS distribution (b) BFS distribution.

Fig. 8
Fig. 8

Linear fitting results of temperature measurement.

Fig. 9
Fig. 9

Vibration measurement result. (a): Piezo-ceramic Transducers (PZT) fiber stretcher. (b): measured BFS variation as a function of time. Dynamic strain is applied by Piezo-ceramic Transducers (PZT) fiber stretcher with 51meter fiber wound on the PZT disk. The stretcher is driven by 1 kHz sinusoidal signal.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E s = k= N 2 1 N 2 e j(2π v k t+ θ k ) , v k =kδ
E s = k= N 2 1 N 2 e j(2π v k t+ θ k ) H SBS ( v k )
H SBS (v)=(1+ g v ) e j φ v
D( φ k )= σ 2 2 1+ g 2
E s = k= N 2 1 N 2 (1+ g v k ) e j( φ k ) σ
φ k =Arg[ (1+ g v k ) e j( φ k ) +σ ]
I=(1+ g v k ) e j( φ k ) +σ
R= I Q I I = Im[I] Re[I] = (1+ g v k )sin( φ k ) (1+ g v k )cos( φ k ) ,σ= σ I +j σ Q
R ¯ =tan( φ k )
D(R)= R ¯ 2 [ D( I I ) I I 2 + D( I Q ) I Q 2 2 c( I I , I Q ) I I ¯ I Q ¯ ]
φ k =arctan( R ¯ )+arcta n ( R ¯ )(R R ¯ )+ L 2 (R)
φ k arctan( R ¯ )+arcta n ( R ¯ )(R R ¯ )
D(R)arcta n ( R ¯ )D(R)
D ( φ k ) = R ¯ 2 ( 1 + R ¯ 2 ) 2 ( σ I 2 I I ¯ 2 + σ Q 2 I Q ¯ 2 ) = σ 2 2 1 + g 2

Metrics