Abstract

We propose and experimentally demonstrate broadband silicon mode (de)multiplexers based on the optimization of system adiabaticity using shortcuts to adiabaticity (STA). The measured insertion losses and crosstalks were less than 1.1 dB and −24 dB, respectively, for the five two-mode mode-division-multiplexing (MDM) links over wavelengths ranging from 1500 nm to 1600 nm. The four-mode MDM link showed measured insertion losses and crosstalks less than 1.3 dB and −23 dB, respectively, within the same wavelength range. The method paves the way for future adaptation of the STA protocols to various components.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity

Tzu-Hsuan Pan and Shuo-Yen Tseng
Opt. Express 23(8) 10405-10412 (2015)

Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing

Tadesse Mulugeta and Mahmoud Rasras
Opt. Express 23(2) 943-949 (2015)

Silicon mode multi/demultiplexer based on multimode grating-assisted couplers

Huiye Qiu, Hui Yu, Ting Hu, Guomin Jiang, Haifeng Shao, Ping Yu, Jianyi Yang, and Xiaoqing Jiang
Opt. Express 21(15) 17904-17911 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
    [Crossref]
  2. T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Express 22(26), 31899–31906 (2014).
    [Crossref] [PubMed]
  3. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  4. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  5. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
    [Crossref]
  6. M. Ye, Y. Yu, J. Zou, W. Yang, and X. Zhang, “On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing,” Opt. Lett. 39(4), 758–761 (2014).
    [Crossref] [PubMed]
  7. C. Pan and B. M. A. Rahman, “Accurate Analysis of the Mode (de)multiplexer Using Asymmetric Directional Coupler,” J. Lightwave Technol. 34(9), 2288–2296 (2016).
    [Crossref]
  8. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  9. W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, and J. Yang, “Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions,” Opt. Lett. 41(12), 2851–2854 (2016).
    [Crossref] [PubMed]
  10. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
    [Crossref] [PubMed]
  11. J. Wang, Y. Xuan, M. Qi, H. Huang, Y. Li, M. Li, X. Chen, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, and F. Gan, “Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers,” Opt. Lett. 40(9), 1956–1959 (2015).
    [Crossref] [PubMed]
  12. L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016).
    [Crossref] [PubMed]
  13. S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
    [Crossref] [PubMed]
  14. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
    [Crossref] [PubMed]
  15. T.-H. Pan and S.-Y. Tseng, “Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity,” Opt. Express 23(8), 10405–10412 (2015).
    [Crossref] [PubMed]
  16. C.-P. Ho and S.-Y. Tseng, “Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 40(21), 4831–4834 (2015).
    [Crossref] [PubMed]
  17. M. L. Cooper and S. Mookherjea, “Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides,” Opt. Express 17(3), 1583–1599 (2009).
    [Crossref] [PubMed]

2016 (4)

2015 (3)

2014 (5)

2013 (3)

2009 (1)

2002 (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, C. P.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, W.

Chen, X.

Chiu, Y.-F.

Chu, T.

Cooper, M. L.

Dadap, J. I.

Dai, D.

Dai, T.

Ding, Y.

Dong, P.

P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

Driscoll, J. B.

Frandsen, L. H.

Frellsen, L. F.

Fu, Y.

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Gan, F.

Grote, R. R.

Ho, C.-P.

Huang, H.

Jiang, X.

Kawaguchi, Y.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Li, M.

Li, W.

Li, Y.

Li, Z.

Lipson, M.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Lu, M.

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Martínez-Garaot, S.

Mookherjea, S.

Muga, J. G.

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Osgood, R. M.

Pan, C.

Pan, T.-H.

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Qi, M.

Qiao, L.

Rahman, B. M. A.

Sheng, Z.

Shi, Y.

Sigmund, O.

Souhan, B.

Tseng, S.-Y.

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

Wang, G.

Wang, J.

Wang, P.

Wang, X.

Wen, R.-D.

Wu, A.

Xiao, X.

Xing, J.

Xuan, Y.

Yang, J.

Yang, T.

Yang, W.

Ye, M.

Ye, T.

Yu, J.

Yu, Y.

Zhang, X.

Zhang, Y.

Zhou, L.

Zou, J.

Zou, S.

Electron. Lett. (1)

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

J. Lightwave Technol. (1)

Nat. Commun. (1)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (8)

C.-P. Ho and S.-Y. Tseng, “Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 40(21), 4831–4834 (2015).
[Crossref] [PubMed]

S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
[Crossref] [PubMed]

M. Ye, Y. Yu, J. Zou, W. Yang, and X. Zhang, “On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing,” Opt. Lett. 39(4), 758–761 (2014).
[Crossref] [PubMed]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
[Crossref] [PubMed]

W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, and J. Yang, “Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions,” Opt. Lett. 41(12), 2851–2854 (2016).
[Crossref] [PubMed]

J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013).
[Crossref] [PubMed]

J. Wang, Y. Xuan, M. Qi, H. Huang, Y. Li, M. Li, X. Chen, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, and F. Gan, “Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers,” Opt. Lett. 40(9), 1956–1959 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagrams of the optimized mode (de)multiplexer using STA. (a) Top view. (b) Side view.

Fig. 2
Fig. 2

Calculated effective indices for different TE and TM modes in a 220-nm-high strip waveguide versus different waveguide widths at 1550 nm. (a) TE modes. (b) TM modes.

Fig. 3
Fig. 3

Relations between propagation-constants mismatch and access-waveguide widths and between coupling coefficients and waveguide separations. (a) and (c) TE modes. (b) and (d) TM modes.

Fig. 4
Fig. 4

Calculated design parameters of the mode (de)multiplexers. (a) TE0 and TE1. (b) TE0 and TE2. (c) TE0 and TE3. (d) TM0 and TM1. (e) TM0 and TM2.

Fig. 5
Fig. 5

FDTD simulation results of the mode (de)multiplexers. (a) TE0 and TE1. (b) TE0 and TE2. (c) TE0 and TE3. (d) TM0 and TM1. (e) TM0 and TM1. The inset pictures display the power distributions from the input mode to the desired output modes at 1550 nm.

Fig. 6
Fig. 6

Microscopic and partial scanning electron microscope (SEM) images of the fabricated TM0–TM1 MDM link.

Fig. 7
Fig. 7

Experimental results of the two-mode MDM links. (a) TE0 and TE1. (b) TE0 and TE2. (c) TE0 and TE3. (d) TM0 and TM1. (e) TM0 and TM2.

Fig. 8
Fig. 8

Microscopic and partial SEM pictures of the fabricated four-mode (de)multiplexer with optimized parameters.

Fig. 9
Fig. 9

Measured spectra responses of the fabricated four-mode MDM link at all output ports.

Fig. 10
Fig. 10

Losses experienced by the TE0–TE1 (de)multiplexer. (a) Simulated insertion. (b) Measured insertion.

Fig. 11
Fig. 11

Simulated TE0–TE1 conversion efficiencies for the possible fabrication errors of (a) waveguide separation, (b) width of the access waveguide, and (c) width of the bus waveguide, when the coupling length is 150 μm.

Tables (1)

Tables Icon

Table 1 Values of the parameters for each mode (de)multiplexer

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d dz [ A 0 A m ]=i[ Δ(z) Κ(z) Κ(z) Δ(z) ][ A 0 A m ],
| Ψ z + =cos( θ/2 ) e iϕ/2 | Ψ(L) +sin( θ/2 ) e iϕ/2 | Ψ(0)
| Ψ z =sin( θ/2 ) e iϕ/2 | Ψ(L) cos( θ/2 ) e iϕ/2 | Ψ(0) ,
dθ / dz =Κsinϕ
dϕ / dz =Δ+Κcosϕcotθ
θ= π 2 [ 1+sin π( 2zL ) 2L ]
ϕ( z )= π 2 +( π 2 c )( 1.1250 )sin( πz L ) +( π 2 c )( 0.1250 )sin( 3πz L ),
Κ( z )= Κ 0 exp[ k( D( z ) D 0 ) ],
Δ( z )=A W a (z) 2 +B W a (z)+C,

Metrics