Abstract

Surface plasmon modes propagating in metal nanowires are conveniently excited by focusing a laser beam on one extremity of the nanowire. We find that the precise positioning of the nanowire inside the focal region drastically influences the excitation efficiency of the different SPP modes sustained by the plasmonic waveguide. We demonstrate a spatially selective excitation of bound and leaky surface plasmon modes with excitation maps that strongly depend on the orientation of the incident linear polarization. We discuss this modal selection by considering the inhomogeneous distribution of the field components inside the focus. Our finding provides a way to discriminate the effective indices of the modes offering thus an increased coupling agility for future nanowire-based plasmonic architectures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides

Carsten Reinhardt, Andreas Seidel, Andrey B. Evlyukhin, Wei Cheng, and Boris N. Chichkov
J. Opt. Soc. Am. B 26(12) B55-B60 (2009)

Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon

Johann Berthelot, Alexandre Bouhelier, Gérard Colas des Francs, Jean-Claude Weeber, and Alain Dereux
Opt. Express 19(6) 5303-5312 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
    [Crossref]
  2. X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser. Phot. Rev. 7, 855–881 (2013).
    [Crossref]
  3. H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophot.  1, 155–169 (2012).
    [Crossref]
  4. P. Deng, W. Hong, and X. Hong-Xing, “Metallic nanowires for subwavelength waveguiding and nanophotonic devices,” Chin. Phys. B 22, 097305 (2013).
    [Crossref]
  5. T. Laroche, A. Vial, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).
    [Crossref]
  6. P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett. 12, 661–665 (2012).
    [Crossref] [PubMed]
  7. D. Singh, A. Dasgupta, V. Aswathy, R. P. Tripathi, and G. V. P. Kumar, “Directional out-coupling of light from plasmonic nanowire-nanoparticle junction,” Opt. Lett. 40, 1006–1009 (2015).
    [Crossref] [PubMed]
  8. S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
    [Crossref]
  9. Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
    [Crossref]
  10. L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
    [Crossref]
  11. M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
    [Crossref] [PubMed]
  12. M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano. Lett. 7, 2346–2350 (2007).
    [Crossref] [PubMed]
  13. Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11, 1676–1680 (2011).
    [Crossref] [PubMed]
  14. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
    [Crossref]
  15. C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
    [Crossref]
  16. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [Crossref] [PubMed]
  17. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
    [Crossref] [PubMed]
  18. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
    [Crossref]
  19. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
    [Crossref]
  20. A. Normatov, B. Spektor, Y. Leviatan, and J. Shamir, “Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams,” Opt. Express 19, 8506–8513 (2011).
    [Crossref] [PubMed]
  21. Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
    [Crossref] [PubMed]
  22. G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
    [Crossref]
  23. N. Liu, Z. Li, and H. Xu, “Polarization-dependent study on propagating surface plasmons in silver nanowires launched by a near-field scanning optical fiber tip,” Small 8, 2641–2646 (2012).
    [Crossref] [PubMed]
  24. P. Venugopalan, X. L. Q. Zhang, and M. Gu, “Polarization-sensitive characterization of the propagating plasmonic modes in silver nanowire waveguide on a glass substrate with a scanning near-field optical microscope,” Opt. Express 21, 15247–15252 (2013).
    [Crossref] [PubMed]
  25. C.-X. Kan, J.-J. Zhu, and X.-G. Zhu, “Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms,” J. Phys. D: Appl. Phys. 41, 155304 (2008).
    [Crossref]
  26. M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
    [Crossref] [PubMed]
  27. H. Yang, M. Qiu, and Q. Li, “Identification and control of multiple leaky plasmon modes in silver nanowires,” Laser Photon. Rev. 10, 278–286 (2016).
    [Crossref]
  28. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
    [Crossref]
  29. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
    [Crossref]
  30. S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
    [Crossref] [PubMed]
  31. L. Novotny and B. Hecht, “Principles of nano-optics,” (Cambridge University Press, 2006).
    [Crossref]
  32. P. Törok, P. Varga, P. Laczik, and G. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).
    [Crossref]
  33. Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electron. Res. 146, 77–88 (2014).
    [Crossref]
  34. Q. Li and M. Qiu, “Plasmonic wave propagation in silver nanowires: guiding modes or not?” Opt. Express 21, 8587–8595 (2013).
    [Crossref] [PubMed]
  35. J. Berthelot, A. Bouhelier, G. Colas des Francs, J.-C. Weeber, and A. Dereux, “Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon,” Opt. Express 19, 5303–5312 (2011).
    [Crossref] [PubMed]
  36. Z. Jia, H. W. D. Panb, and H. Xu, “Direction-resolved radiation from polarization controlled surface plasmon modes on silver nanowire antennas,” Nanoscale 8, 20118 (2016).
    [Crossref] [PubMed]
  37. M. R. Escalé, A. Sergeyev, R. Geiss, and R. Grange, “Nonlinear mode switching in lithium niobate nanowaveguides to control light directionality,” Opt. Express 25, 3013–3023 (2017).
    [Crossref] [PubMed]
  38. N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, and A. Hartschuh, “Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging,” ACS Nano 7, 10257–10262 (2013).
    [Crossref] [PubMed]
  39. S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115, 197401 (2015).
    [Crossref] [PubMed]
  40. K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
    [Crossref]
  41. G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009).
    [Crossref]
  42. I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).
    [Crossref]

2017 (2)

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

M. R. Escalé, A. Sergeyev, R. Geiss, and R. Grange, “Nonlinear mode switching in lithium niobate nanowaveguides to control light directionality,” Opt. Express 25, 3013–3023 (2017).
[Crossref] [PubMed]

2016 (4)

H. Yang, M. Qiu, and Q. Li, “Identification and control of multiple leaky plasmon modes in silver nanowires,” Laser Photon. Rev. 10, 278–286 (2016).
[Crossref]

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
[Crossref]

Z. Jia, H. W. D. Panb, and H. Xu, “Direction-resolved radiation from polarization controlled surface plasmon modes on silver nanowire antennas,” Nanoscale 8, 20118 (2016).
[Crossref] [PubMed]

2015 (2)

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115, 197401 (2015).
[Crossref] [PubMed]

D. Singh, A. Dasgupta, V. Aswathy, R. P. Tripathi, and G. V. P. Kumar, “Directional out-coupling of light from plasmonic nanowire-nanoparticle junction,” Opt. Lett. 40, 1006–1009 (2015).
[Crossref] [PubMed]

2014 (1)

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electron. Res. 146, 77–88 (2014).
[Crossref]

2013 (8)

Q. Li and M. Qiu, “Plasmonic wave propagation in silver nanowires: guiding modes or not?” Opt. Express 21, 8587–8595 (2013).
[Crossref] [PubMed]

N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, and A. Hartschuh, “Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging,” ACS Nano 7, 10257–10262 (2013).
[Crossref] [PubMed]

P. Venugopalan, X. L. Q. Zhang, and M. Gu, “Polarization-sensitive characterization of the propagating plasmonic modes in silver nanowire waveguide on a glass substrate with a scanning near-field optical microscope,” Opt. Express 21, 15247–15252 (2013).
[Crossref] [PubMed]

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser. Phot. Rev. 7, 855–881 (2013).
[Crossref]

P. Deng, W. Hong, and X. Hong-Xing, “Metallic nanowires for subwavelength waveguiding and nanophotonic devices,” Chin. Phys. B 22, 097305 (2013).
[Crossref]

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
[Crossref]

2012 (4)

H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophot.  1, 155–169 (2012).
[Crossref]

P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett. 12, 661–665 (2012).
[Crossref] [PubMed]

N. Liu, Z. Li, and H. Xu, “Polarization-dependent study on propagating surface plasmons in silver nanowires launched by a near-field scanning optical fiber tip,” Small 8, 2641–2646 (2012).
[Crossref] [PubMed]

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref] [PubMed]

2011 (5)

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
[Crossref] [PubMed]

J. Berthelot, A. Bouhelier, G. Colas des Francs, J.-C. Weeber, and A. Dereux, “Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon,” Opt. Express 19, 5303–5312 (2011).
[Crossref] [PubMed]

A. Normatov, B. Spektor, Y. Leviatan, and J. Shamir, “Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams,” Opt. Express 19, 8506–8513 (2011).
[Crossref] [PubMed]

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11, 1676–1680 (2011).
[Crossref] [PubMed]

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).
[Crossref]

2010 (2)

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[Crossref] [PubMed]

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

2009 (3)

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009).
[Crossref]

2008 (3)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

C.-X. Kan, J.-J. Zhu, and X.-G. Zhu, “Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms,” J. Phys. D: Appl. Phys. 41, 155304 (2008).
[Crossref]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

2007 (4)

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano. Lett. 7, 2346–2350 (2007).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

T. Laroche, A. Vial, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).
[Crossref]

2000 (1)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[Crossref]

1999 (1)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

1995 (1)

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Aswathy, V.

Aussenegg, F.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

Bao, K.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[Crossref] [PubMed]

Bardhan, R.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano. Lett. 7, 2346–2350 (2007).
[Crossref] [PubMed]

Bernardin, T.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
[Crossref]

Berthelot, J.

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

J. Berthelot, A. Bouhelier, G. Colas des Francs, J.-C. Weeber, and A. Dereux, “Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon,” Opt. Express 19, 5303–5312 (2011).
[Crossref] [PubMed]

Booker, G.

Bouhelier, A.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115, 197401 (2015).
[Crossref] [PubMed]

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electron. Res. 146, 77–88 (2014).
[Crossref]

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
[Crossref]

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
[Crossref] [PubMed]

J. Berthelot, A. Bouhelier, G. Colas des Francs, J.-C. Weeber, and A. Dereux, “Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon,” Opt. Express 19, 5303–5312 (2011).
[Crossref] [PubMed]

G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

Bozhevolnyi, S. I.

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

Bramant, P.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Ciesielski, R.

N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, and A. Hartschuh, “Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging,” ACS Nano 7, 10257–10262 (2013).
[Crossref] [PubMed]

Cluzel, B.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115, 197401 (2015).
[Crossref] [PubMed]

Colas des Francs, E.

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

Colas des Francs, G.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115, 197401 (2015).
[Crossref] [PubMed]

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electron. Res. 146, 77–88 (2014).
[Crossref]

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
[Crossref]

J. Berthelot, A. Bouhelier, G. Colas des Francs, J.-C. Weeber, and A. Dereux, “Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon,” Opt. Express 19, 5303–5312 (2011).
[Crossref] [PubMed]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
[Crossref] [PubMed]

G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

Dai, S.

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
[Crossref]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Dasgupta, A.

Demichel, O.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115, 197401 (2015).
[Crossref] [PubMed]

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electron. Res. 146, 77–88 (2014).
[Crossref]

Deng, P.

P. Deng, W. Hong, and X. Hong-Xing, “Metallic nanowires for subwavelength waveguiding and nanophotonic devices,” Chin. Phys. B 22, 097305 (2013).
[Crossref]

Dereux, A.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
[Crossref]

J. Berthelot, A. Bouhelier, G. Colas des Francs, J.-C. Weeber, and A. Dereux, “Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon,” Opt. Express 19, 5303–5312 (2011).
[Crossref] [PubMed]

G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

Dickson, R. M.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[Crossref]

Ditlbacher, B. S. H.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

Dong, C.-H.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Drezet, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

Duan, J.-Y.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Dujardin, E.

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
[Crossref] [PubMed]

Escalé, M. R.

Espiau de Lamaestre, R.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
[Crossref]

Fan, L.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11, 1676–1680 (2011).
[Crossref] [PubMed]

Fang, Y.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11, 1676–1680 (2011).
[Crossref] [PubMed]

Fu, Q.

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

Geiss, R.

Girard, C.

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electron. Res. 146, 77–88 (2014).
[Crossref]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

Gonzàlez, M. U.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

Goudonnet, J. P.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

Grady, N. K.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano. Lett. 7, 2346–2350 (2007).
[Crossref] [PubMed]

Grandidier, J.

G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

Grange, R.

Gruber, C.

P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett. 12, 661–665 (2012).
[Crossref] [PubMed]

Gu, M.

Guan, J.-G.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Guo, G.-C.

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Guo, G.-P.

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Guo, X.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser. Phot. Rev. 7, 855–881 (2013).
[Crossref]

Halas, N. J.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano. Lett. 7, 2346–2350 (2007).
[Crossref] [PubMed]

Han, Z.

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

Hao, F.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano. Lett. 7, 2346–2350 (2007).
[Crossref] [PubMed]

Hartmann, N.

N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, and A. Hartschuh, “Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging,” ACS Nano 7, 10257–10262 (2013).
[Crossref] [PubMed]

Hartschuh, A.

N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, and A. Hartschuh, “Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging,” ACS Nano 7, 10257–10262 (2013).
[Crossref] [PubMed]

Hassan, K.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, “Principles of nano-optics,” (Cambridge University Press, 2006).
[Crossref]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Hohenau, A.

P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett. 12, 661–665 (2012).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

Hong, W.

P. Deng, W. Hong, and X. Hong-Xing, “Metallic nanowires for subwavelength waveguiding and nanophotonic devices,” Chin. Phys. B 22, 097305 (2013).
[Crossref]

Hong-Xing, X.

P. Deng, W. Hong, and X. Hong-Xing, “Metallic nanowires for subwavelength waveguiding and nanophotonic devices,” Chin. Phys. B 22, 097305 (2013).
[Crossref]

Hu, B.

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

Huang, Y.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[Crossref] [PubMed]

Jia, Z.

Z. Jia, H. W. D. Panb, and H. Xu, “Direction-resolved radiation from polarization controlled surface plasmon modes on silver nanowire antennas,” Nanoscale 8, 20118 (2016).
[Crossref] [PubMed]

Kan, C.-X.

C.-X. Kan, J.-J. Zhu, and X.-G. Zhu, “Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms,” J. Phys. D: Appl. Phys. 41, 155304 (2008).
[Crossref]

Knight, M. W.

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano. Lett. 7, 2346–2350 (2007).
[Crossref] [PubMed]

Koenderink, A. F.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).
[Crossref]

Koller, D.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

Krenn, J.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

Krenn, J. R.

P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett. 12, 661–665 (2012).
[Crossref] [PubMed]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

Kuipers, L. K.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

Kumar, G. V. P.

Kusar, P.

P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett. 12, 661–665 (2012).
[Crossref] [PubMed]

Laczik, P.

Laroche, T.

T. Laroche, A. Vial, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).
[Crossref]

Leitner, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

Leviatan, Y.

Li, Q.

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
[Crossref]

H. Yang, M. Qiu, and Q. Li, “Identification and control of multiple leaky plasmon modes in silver nanowires,” Laser Photon. Rev. 10, 278–286 (2016).
[Crossref]

Q. Li and M. Qiu, “Plasmonic wave propagation in silver nanowires: guiding modes or not?” Opt. Express 21, 8587–8595 (2013).
[Crossref] [PubMed]

Li, Z.

N. Liu, Z. Li, and H. Xu, “Polarization-dependent study on propagating surface plasmons in silver nanowires launched by a near-field scanning optical fiber tip,” Small 8, 2641–2646 (2012).
[Crossref] [PubMed]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[Crossref] [PubMed]

Lin, C.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11, 1676–1680 (2011).
[Crossref] [PubMed]

Liu, G.

Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
[Crossref]

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

Liu, N.

N. Liu, Z. Li, and H. Xu, “Polarization-dependent study on propagating surface plasmons in silver nanowires launched by a near-field scanning optical fiber tip,” Small 8, 2641–2646 (2012).
[Crossref] [PubMed]

Lu, J.

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Luo, S.

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
[Crossref]

Lv, J.

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

Lyon, L. A.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[Crossref]

Ma, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser. Phot. Rev. 7, 855–881 (2013).
[Crossref]

Mackowski, S.

N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, and A. Hartschuh, “Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging,” ACS Nano 7, 10257–10262 (2013).
[Crossref] [PubMed]

Markey, L.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

Massenot, S.

G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

Meixner, A. J.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11, 1676–1680 (2011).
[Crossref] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Nordlander, P.

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[Crossref] [PubMed]

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano. Lett. 7, 2346–2350 (2007).
[Crossref] [PubMed]

Normatov, A.

Novotny, L.

L. Novotny and B. Hecht, “Principles of nano-optics,” (Cambridge University Press, 2006).
[Crossref]

Ould Agha, Y.

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electron. Res. 146, 77–88 (2014).
[Crossref]

Panb, H. W. D.

Z. Jia, H. W. D. Panb, and H. Xu, “Direction-resolved radiation from polarization controlled surface plasmon modes on silver nanowire antennas,” Nanoscale 8, 20118 (2016).
[Crossref] [PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Piatkowski, D.

N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, and A. Hartschuh, “Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging,” ACS Nano 7, 10257–10262 (2013).
[Crossref] [PubMed]

Polman, A.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Qiu, M.

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
[Crossref]

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

H. Yang, M. Qiu, and Q. Li, “Identification and control of multiple leaky plasmon modes in silver nanowires,” Laser Photon. Rev. 10, 278–286 (2016).
[Crossref]

Q. Li and M. Qiu, “Plasmonic wave propagation in silver nanowires: guiding modes or not?” Opt. Express 21, 8587–8595 (2013).
[Crossref] [PubMed]

Quidant, R.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

Ren, X.-F.

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Renger, J.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

Roussey, M.

T. Laroche, A. Vial, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).
[Crossref]

Sergeyev, A.

Sersic, I.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).
[Crossref]

Shamir, J.

Sharma, J.

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
[Crossref] [PubMed]

Shi, H.-Y.

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

Singh, D.

Song, M.

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
[Crossref] [PubMed]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

Spektor, B.

Stepanov, A.

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

Thete, A.

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

Tong, L.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser. Phot. Rev. 7, 855–881 (2013).
[Crossref]

Törok, P.

Tripathi, R. P.

Tuambilangana, C.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).
[Crossref]

Varga, P.

Venugopalan, P.

Verhagen, E.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

Vial, A.

T. Laroche, A. Vial, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).
[Crossref]

Viarbitskaya, S.

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115, 197401 (2015).
[Crossref] [PubMed]

Wang, L.-L.

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

Wang, W.

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
[Crossref]

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

Wang, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser. Phot. Rev. 7, 855–881 (2013).
[Crossref]

Weeber, J. C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

Weeber, J.-C.

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
[Crossref]

J. Berthelot, A. Bouhelier, G. Colas des Francs, J.-C. Weeber, and A. Dereux, “Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon,” Opt. Express 19, 5303–5312 (2011).
[Crossref] [PubMed]

G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009).
[Crossref]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

Wei, H.

H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophot.  1, 155–169 (2012).
[Crossref]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

Xu, H.

Z. Jia, H. W. D. Panb, and H. Xu, “Direction-resolved radiation from polarization controlled surface plasmon modes on silver nanowire antennas,” Nanoscale 8, 20118 (2016).
[Crossref] [PubMed]

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref] [PubMed]

N. Liu, Z. Li, and H. Xu, “Polarization-dependent study on propagating surface plasmons in silver nanowires launched by a near-field scanning optical fiber tip,” Small 8, 2641–2646 (2012).
[Crossref] [PubMed]

H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophot.  1, 155–169 (2012).
[Crossref]

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[Crossref] [PubMed]

Yang, H.

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
[Crossref]

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

H. Yang, M. Qiu, and Q. Li, “Identification and control of multiple leaky plasmon modes in silver nanowires,” Laser Photon. Rev. 10, 278–286 (2016).
[Crossref]

Yang, R.

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Yang, Y.

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Yu, S.-H.

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

Zhang, D.

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11, 1676–1680 (2011).
[Crossref] [PubMed]

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
[Crossref] [PubMed]

Zhang, S.

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref] [PubMed]

Zhang, X. L. Q.

Zhao, D.

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

Zhou, L.

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

Zhu, J.-J.

C.-X. Kan, J.-J. Zhu, and X.-G. Zhu, “Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms,” J. Phys. D: Appl. Phys. 41, 155304 (2008).
[Crossref]

Zhu, X.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11, 1676–1680 (2011).
[Crossref] [PubMed]

Zhu, X.-G.

C.-X. Kan, J.-J. Zhu, and X.-G. Zhu, “Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms,” J. Phys. D: Appl. Phys. 41, 155304 (2008).
[Crossref]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

ACS Nano (3)

M. Song, A. Bouhelier, P. Bramant, J. Sharma, E. Dujardin, D. Zhang, and G. Colas des Francs, “Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires,” ACS Nano 5, 5874–5880 (2011).
[Crossref] [PubMed]

S. Zhang and H. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano 6, 8128–8135 (2012).
[Crossref] [PubMed]

N. Hartmann, D. Piatkowski, R. Ciesielski, S. Mackowski, and A. Hartschuh, “Radiation channels close to a plasmonic nanowire visualized by back focal plane imaging,” ACS Nano 7, 10257–10262 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007).
[Crossref]

S. Dai, Q. Li, G. Liu, H. Yang, Y. Yang, D. Zhao, W. Wang, and M. Qiu, “Laser-induced single point nanowelding of silver nanowires,” Appl. Phys. Lett. 108, 121103 (2016).
[Crossref]

Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, and M. Qiu, “Optically controlled local nanosoldering of metal nanowires,” Appl. Phys. Lett. 108, 1493101 (2016).
[Crossref]

L. Zhou, J. Lu, H. Yang, S. Luo, W. Wang, J. Lv, M. Qiu, and Q. Li, “Optically controllable nanobreaking of metallic nanowires,” Appl. Phys. Lett. 110, 081101 (2017).
[Crossref]

T. Laroche, A. Vial, and M. Roussey, “Crystalline structure’s influence on the near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 91, 123101 (2007).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95, 221109 (2009).
[Crossref]

Chin. Phys. B (1)

P. Deng, W. Hong, and X. Hong-Xing, “Metallic nanowires for subwavelength waveguiding and nanophotonic devices,” Chin. Phys. B 22, 097305 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[Crossref]

J. Phys. D: Appl. Phys. (1)

C.-X. Kan, J.-J. Zhu, and X.-G. Zhu, “Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms,” J. Phys. D: Appl. Phys. 41, 155304 (2008).
[Crossref]

Laser Photon. Rev. (1)

H. Yang, M. Qiu, and Q. Li, “Identification and control of multiple leaky plasmon modes in silver nanowires,” Laser Photon. Rev. 10, 278–286 (2016).
[Crossref]

Laser. Phot. Rev. (1)

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser. Phot. Rev. 7, 855–881 (2013).
[Crossref]

Mat. Sci. Eng. B (1)

A. Drezet, A. Hohenau, D. Koller, A. Stepanov, B. S. H. Ditlbacher, F. Aussenegg, A. Leitner, and J. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mat. Sci. Eng. B 148, 220–229 (2008).
[Crossref]

Nano Lett. (3)

Z. Li, K. Bao, Y. Fang, Y. Huang, P. Nordlander, and H. Xu, “Correlation between incident and emission polarization in nanowire surface plasmon waveguides,” Nano Lett. 10, 1831–1835 (2010).
[Crossref] [PubMed]

P. Kusar, C. Gruber, A. Hohenau, and J. R. Krenn, “Measurement and reduction of damping in plasmonic nanowires,” Nano Lett. 12, 661–665 (2012).
[Crossref] [PubMed]

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire,” Nano Lett. 11, 1676–1680 (2011).
[Crossref] [PubMed]

Nano. Lett. (1)

M. W. Knight, N. K. Grady, R. Bardhan, F. Hao, P. Nordlander, and N. J. Halas, “Nanoparticle-mediated coupling of light into a nanowire,” Nano. Lett. 7, 2346–2350 (2007).
[Crossref] [PubMed]

Nanophot (1)

H. Wei and H. Xu, “Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits,” Nanophot.  1, 155–169 (2012).
[Crossref]

Nanoscale (1)

Z. Jia, H. W. D. Panb, and H. Xu, “Direction-resolved radiation from polarization controlled surface plasmon modes on silver nanowire antennas,” Nanoscale 8, 20118 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

M. Song, A. Thete, J. Berthelot, Q. Fu, D. Zhang, E. Colas des Francs, E. Dujardin, and A. Bouhelier, “Electron-induced limitation of surface plasmon propagation in silver nanowires,” Nanotechnology 24, 095201 (2013).
[Crossref] [PubMed]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[Crossref] [PubMed]

Nature Nanotech. (1)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotech. 3, 660–665 (2008).
[Crossref]

New J. Phys. (1)

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New J. Phys. 13, 083019 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. E (1)

G.-P. Guo, R. Yang, X.-F. Ren, L.-L. Wang, H.-Y. Shi, B. Hu, S.-H. Yu, and G.-C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Phys. E 42, 1751–1754 (2010).
[Crossref]

Phys. Rev. B (3)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[Crossref]

K. Hassan, A. Bouhelier, T. Bernardin, G. Colas des Francs, J.-C. Weeber, A. Dereux, and R. Espiau de Lamaestre, “Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides,” Phys. Rev. B 87, 195428 (2013).
[Crossref]

G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009).
[Crossref]

Phys. Rev. Lett. (2)

S. Viarbitskaya, O. Demichel, B. Cluzel, G. Colas des Francs, and A. Bouhelier, “Delocalization of nonlinear optical responses in plasmonic nanoantennas,” Phys. Rev. Lett. 115, 197401 (2015).
[Crossref] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

Prog. Electron. Res. (1)

Y. Ould Agha, O. Demichel, C. Girard, A. Bouhelier, and G. Colas des Francs, “Near-field properties of plasmonic nanostructures with high aspect ratio,” Prog. Electron. Res. 146, 77–88 (2014).
[Crossref]

Rep. Prog. Phys. (1)

Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[Crossref]

Small (1)

N. Liu, Z. Li, and H. Xu, “Polarization-dependent study on propagating surface plasmons in silver nanowires launched by a near-field scanning optical fiber tip,” Small 8, 2641–2646 (2012).
[Crossref] [PubMed]

Other (1)

L. Novotny and B. Hecht, “Principles of nano-optics,” (Cambridge University Press, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) schematic representation of the experimental configuration used to excite the plasmon modes in a nanowire and to detect their signatures in real-plane and Fourier-plane imaging. (b) Evolution of the calculated effective indices of the bound and leaky surface plasmon modes as a function of the Ag nanowire cross-section. The section is pentagonal and the nanowire is placed at a glass/air interface. The images on the right are the calculated magnetic field intensity profiles of the leaky and bound SPP modes for a 300 nm wide pentagonal Ag nanowire.

Fig. 2
Fig. 2

(a) Optical transmission image of a Ag nanowire deposited on a glass substrate. (b) Optical image when the left apex is illuminated with a strongly focused λ = 780 nm laser. Scattering at the distal end and point-defects distributed along the nanowire confirm the propagation of a surface plasmon. The incident polarization is aligned with the nanowire.

Fig. 3
Fig. 3

(a) Reconstructed SPP excitation map when the polarization is (a) along the nanowire (x-direction) and (b) orthogonal to the nanowire (y-direction). The background intensity in the experimental images arises from the residual spill out of the intense laser signal at the focal region. Insets: Corresponding numerical maps evaluated 10 nm below the glass interface for a 1.2μm × 1.2μm scan window. The calculation maps are scaled to the experimental images.

Fig. 4
Fig. 4

Calculated spatial distribution of field components of a focused Gaussian beam polarized along the y-direction. The calculation is done considering an objective with a numerical aperture of 1.49. (a), (b) and (c) are the field distributions of the in-plane components E0, y , E0, x and the out-of-plane contribution E0, z , respectively. Note the phase variations between the lobes in (b) and (c). The distributions are extracted from a plane corresponding at the glass/air interface z = 0. The distributions are rotated by 90° if the incident polarization is aligned along the x-direction.

Fig. 5
Fig. 5

(a) Transmission image of a 18μm-long Ag nanowire. The boxes are integration areas used for reconstructing the excitation maps discussed in Fig. 6 (b) and (c). Visualisation of the leaky and bound SPP modes for two positions P1 and P2 of the nanowire extremity in the focus. The polarization is aligned along the nanowire. The images of the right are the corresponding distributions of the magnetic field and are recalled from Fig.1(b).

Fig. 6
Fig. 6

(a) and (b) are reconstructed SPP excitation maps obtained by integrating the intensity emitted in the dotted and solid red boxes indicated in the optical image of the nanowire recalled in the top inset, respectively. The incident light is linearly polarized along the nanowire. The insets are calculated maps obtained by integrating the computed intensity taken 10 nm above the nanowire for the leaky mode and 10 nm below the nanowire in the substrate to account for the bound mode. The calculation windows are scaled to the experimental images. (c) and (d) depict the situation for an incident light polarized perpendicularly from the nanowire. In (b) and (d) the integrated signal may contain a mix contribution of bound and leaky modes.

Fig. 7
Fig. 7

(a) and (b) are partial Fourier plane images showing the wave-vector distributions for the nanowire positions P1 and P2 indicated in Fig. 5(a) and (b), respectively. The vertical bright line at an effective index of 1.07 (arrow) is recognized as the signature of the leaky mode. The vertical fringe pattern observed in both distributions originates from the bound mode sustained by the nanowire. (c) Fourier transform of the modal intensity calculated using Eq.6.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E 0 , y ( x , y , z ) = i [ I 00 + I 2 y 2 x 2 r 2 ] E 0 , x ( x , y , z ) = i I 02 2 x y r 2 E 0 , z ( x , y , z ) = 2 i I 01 y r
I 00 = 0 θ m a x d θ 1 f w ( θ 1 ) cos θ 1 sin θ 1 ( τ s + τ p cos θ 3 ) J 0 ( k r ) e i w 3 z I 01 = 0 θ m a x d θ 1 f w ( θ 1 ) cos θ 1 τ p sin θ 3 J 1 ( k r ) e i w 3 z I 02 = 0 θ m a x d θ 1 f w ( θ 1 ) cos θ 1 sin θ 1 ( τ s τ p cos θ 3 ) J 2 ( k r ) e i w 3 z
E ( r ) = E 0 ( r ) + k 0 2 w i r e G ( r , r ) ( ϵ A g 1 ) E 0 ( r ) d r
G ( r , r ) = G 0 ( r , r ) + k 0 2 w i r e G 0 ( r , r ) ( ϵ A g 1 ) G ( r , r ) d r
H ( x , y ) = H o e ( y 2 / w 0 2 ) e i ( n spp k o x ) e ( x / 2 L spp ) e y ,
I ( k x , k y ) = | H ˜ ( k x , k y ) | 2 , H ˜ ( k x , k y ) = 0 L NW d x d y H ( x , y ) e i ( k x x + k y y ) .
I ( k x ) 1 2 e L NW / 2 L spp cos [ ( k spp k x ) L NW ] + e L NW / L spp ( k spp k x ) 2 + ( 1 / 2 L spp ) 2

Metrics