Abstract

A metamaterial consisting of an array of gold micro-disks, separated from a ground plane of indium tin oxide (ITO) by a thin film of vanadium dioxide (VO2), behaves as a perfect absorber at infrared (IR) frequencies at room temperature. This metamaterial, which is transparent to visible light, can be switched to a highly reflecting state for IR light by heating the metamaterial to temperatures larger than the metal-insulator phase transition temperature 68°C of VO2. For a disk diameter of 1.5 μm and VO2 film thickness of 320 nm, two absorption bands are obtained: one, that arises from the metamaterial resonance; and a second peak that arises principally from a Fabry-Pérot resonance. A large change (>78%) occurs in the reflectivity between the low and high temperature phases. IR emittance of the metamaterial was measured with IR cameras and shown to be switchable to result in low emittance at high temperature. Optical readout of the state of VO2 within the metamaterial is demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane

Govind Dayal and S. Anantha Ramakrishna
Opt. Express 22(12) 15104-15110 (2014)

Frequency tunable near-infrared metamaterials based on VO2 phase transition

Matthew J. Dicken, Koray Aydin, Imogen M. Pryce, Luke A. Sweatlock, Elizabeth M. Boyd, Sameer Walavalkar, James Ma, and Harry A. Atwater
Opt. Express 17(20) 18330-18339 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41, 337–367 (2011).
    [Crossref]
  2. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
    [Crossref]
  3. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2008).
    [Crossref]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  5. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [PubMed]
  6. G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
    [Crossref] [PubMed]
  7. A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
    [Crossref] [PubMed]
  8. G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 272–274 (2013).
    [Crossref] [PubMed]
  9. R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
    [Crossref]
  10. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
    [Crossref]
  11. A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
    [Crossref]
  12. A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
    [Crossref] [PubMed]
  13. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
    [Crossref] [PubMed]
  14. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
    [Crossref] [PubMed]
  15. H. Wang, Y. Yang, and L. Yang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105, 071907 (2014).
    [Crossref]
  16. A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [Crossref] [PubMed]
  17. G. Dayal and S. A. Ramakrishna, “Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane,” Opt. Express 22, 15104–15110 (2014).
    [Crossref] [PubMed]
  18. B. Rajeswaran, “Developing device quality vanadium oxide thin films for infrared applications (unpublished doctoral dissertation),” Indian Institute of Science, Bangalore (2016).
  19. COMSOL Multiphysics RF Module 4.4 User’s Guide.
  20. C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
    [Crossref]
  21. S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54, 477–481 (2015).
    [Crossref]
  22. O. P. Konovalova, A. I. Sidorov, and I. I. Shaganov, “Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6–10.6 μm,” Opt. Zh. 66(5), 13 (1999) [J. Opt. Technol. 66, 391 (1999)].
  23. J. Peatross and M. Ware, Physics of Light and Optics, 2015 edition, available at as on 13/Feb/2017.
  24. D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

2016 (1)

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

2015 (3)

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54, 477–481 (2015).
[Crossref]

2014 (3)

H. Wang, Y. Yang, and L. Yang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105, 071907 (2014).
[Crossref]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

G. Dayal and S. A. Ramakrishna, “Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane,” Opt. Express 22, 15104–15110 (2014).
[Crossref] [PubMed]

2013 (2)

G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38, 272–274 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

2012 (3)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20, 17503–17508 (2012).
[Crossref] [PubMed]

2011 (3)

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41, 337–367 (2011).
[Crossref]

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (2)

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

2002 (1)

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[Crossref]

1999 (1)

O. P. Konovalova, A. I. Sidorov, and I. I. Shaganov, “Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6–10.6 μm,” Opt. Zh. 66(5), 13 (1999) [J. Opt. Technol. 66, 391 (1999)].

Atwater, H.

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Atwater, H. A.

Aydin, K.

Babar, S.

Basov, D. N.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Boltasseva, A.

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Boyd, E. M.

Brehm, M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Brinkley, M.

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Chae, B. G.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Cho, S. Y.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Cloots, R.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Cui, L.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

Dayal, G.

De Coninck, J.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Deparis, O.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Dicken, M. J.

Driscoll, T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Fan, K.

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

Gauza, S.

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Gholipur, B.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

Giessen, H.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Goumri-Said, S.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Granqvist, C. G.

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[Crossref]

Grzegorczyk, T. M.

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2008).
[Crossref]

Harats, M. G.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Hultåker, A.

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[Crossref]

Jokerst, N. M.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Kebaili, H.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Keilmann, F.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Kim, H. T.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Ko, C.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41, 337–367 (2011).
[Crossref]

Konovalova, O. P.

O. P. Konovalova, A. I. Sidorov, and I. I. Shaganov, “Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6–10.6 μm,” Opt. Zh. 66(5), 13 (1999) [J. Opt. Technol. 66, 391 (1999)].

Lafort, A.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Liu, N.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Lucas, S.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Ma, J.

Maseri, F.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Michel, A. K.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

Mirabella, F.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Miragliotta, J. A.

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Montoya, J. A.

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

Naorem, R.

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

Neubrech, F.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

Padilla, W. J.

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Palit, S.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Peatross, J.

J. Peatross and M. Ware, Physics of Light and Optics, 2015 edition, available at as on 13/Feb/2017.

Peng, F.

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

Pryce, I. M.

Qazilbash, M. M.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Rajeswaran, B.

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

B. Rajeswaran, “Developing device quality vanadium oxide thin films for infrared applications (unpublished doctoral dissertation),” Indian Institute of Science, Bangalore (2016).

Ramakrishna, S. A.

Ramanathan, S.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41, 337–367 (2011).
[Crossref]

Rapaport, R.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Schäferling, M.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Shaganov, I. I.

O. P. Konovalova, A. I. Sidorov, and I. I. Shaganov, “Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6–10.6 μm,” Opt. Zh. 66(5), 13 (1999) [J. Opt. Technol. 66, 391 (1999)].

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

Sidorov, A. I.

O. P. Konovalova, A. I. Sidorov, and I. I. Shaganov, “Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6–10.6 μm,” Opt. Zh. 66(5), 13 (1999) [J. Opt. Technol. 66, 391 (1999)].

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

Sweatlock, L. A.

Taubner, T.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

Tittl, A.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Umarji, A. M.

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

Voué, M.

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

Walavalkar, S.

Walter, R.

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Wang, H.

H. Wang, Y. Yang, and L. Yang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105, 071907 (2014).
[Crossref]

Ware, M.

J. Peatross and M. Ware, Physics of Light and Optics, 2015 edition, available at as on 13/Feb/2017.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Weaver, J. H.

Wu, S. T.

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

Wuttig, M.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

Yang, L.

H. Wang, Y. Yang, and L. Yang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105, 071907 (2014).
[Crossref]

Yang, Y.

H. Wang, Y. Yang, and L. Yang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105, 071907 (2014).
[Crossref]

Yang, Z.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41, 337–367 (2011).
[Crossref]

Yin, X.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Yun, S. J.

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

ACS Nano (1)

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, and H. Giessen, “Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects,” ACS Nano 8(10), 10885–10892 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipur, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597–4603 (2015).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utilizing ultrafast metal-insulator transitions,” Annu. Rev. Mater. Res. 41, 337–367 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B. G. Chae, S. J. Yun, H. T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101, 221101 (2012).
[Crossref]

H. Wang, Y. Yang, and L. Yang, “Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer,” Appl. Phys. Lett. 105, 071907 (2014).
[Crossref]

Opt. Commun. (1)

R. Naorem, G. Dayal, S. A. Ramakrishna, B. Rajeswaran, and A. M. Umarji, “Thermally switchable metamaterial absorber with a VO2 ground plane,” Opt. Commun. 346, 154–157 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett (1)

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett 38, 368–370 (2013).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Zh. (1)

O. P. Konovalova, A. I. Sidorov, and I. I. Shaganov, “Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6–10.6 μm,” Opt. Zh. 66(5), 13 (1999) [J. Opt. Technol. 66, 391 (1999)].

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Shrekenhamer, J. A. Miragliotta, M. Brinkley, K. Fan, F. Peng, J. A. Montoya, S. Gauza, S. T. Wu, and W. J. Padilla, “Electronic and thermally tunable infrared metamaterial absorbers,” Proc. SPIE 9918, 99180U (2016).

Science (1)

A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Thin Solid Films (2)

A. Lafort, H. Kebaili, S. Goumri-Said, O. Deparis, R. Cloots, J. De Coninck, M. Voué, F. Mirabella, F. Maseri, and S. Lucas, “Optical properties of thermochromic VO2 thin films on stainless steel: Experimental and theoretical studies,” Thin Solid Films 519, 3283–3287 (2011).
[Crossref]

C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411, 1–5 (2002).
[Crossref]

Other (4)

J. Peatross and M. Ware, Physics of Light and Optics, 2015 edition, available at as on 13/Feb/2017.

B. Rajeswaran, “Developing device quality vanadium oxide thin films for infrared applications (unpublished doctoral dissertation),” Indian Institute of Science, Bangalore (2016).

COMSOL Multiphysics RF Module 4.4 User’s Guide.

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2008).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: JPG (133 KB)      Structural Uniformity
» Visualization 2: JPG (143 KB)      Surface showing rms roughness
» Visualization 3: JPG (279 KB)      Cooling Cycle

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the unit cell of the MPA (Au disk/VO2/ITO) on glass with t= 150 nm, d=320 nm and h= 100 nm, a=1.5 μm and P= 3.15 μm. (b) Height profile of the disks obtained by AFM imaging. (c) SEM image of the gold disks on the film (top view, also see Visualization 1 for structural uniformity). (d) Image of an AFM scan of the VO2 surface showing rms roughness ≈ ±20 nm (also see Visualization 2).

Fig. 2
Fig. 2

(a) Reflection spectrum of the MPA at various temperatures during heating (for reflection during cooling cycle, see Visualization 3). (b) Measured reflection of the unstructured VO2/ITO layers and from different positions of the MPA. (c) Optical reflectivity of the MPA measured through the glass substrate. (d) Calculated reflection spectrum of VO2/ITO layers and the MPA with different disk period at room temperature and at high temp. (H. T.) (The insets show the angle dependent reflection at the peak wavelengths, 5.69 μm and 9.62 μm w.r.t the angle of incidence (A. I.)).

Fig. 3
Fig. 3

(a) Image of the sample surface with a visible camera. The square patch is the structured MPA seen through a copper ring used for thermal contact. The bright portion is highly reflecting silver paint. (b)–(d) LWIR images of the emittance at different sample temperatures. (e)–(h) show the MWIR images of the emittance at different temperatures. Results of computations on the MPA structures are given: (i) Magnetic field magnitude at λ= 5.69 μm (j) Magnetic field magnitude at 9.62 μm and the arrows in (i) and (j) indicate the distribution of electric field.

Metrics